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Abstract

The rising importance of movement analysis led to the development of more complex biomechanical models to describe in
detail the human motion patterns. The models scaled from simplistic two-dimensional to three-dimensional representations
of body including detailed joint, muscle, tendon, and ligament models. Different computational methodologies have been
proposed to extend traditional kinematic and dynamic analysis to include not only the evaluation of muscle forces but also
the action of the central nervous system. Hence, a large number of models varying in complexity and target application are
available in literature. This narrative review aims to provide an overview of the modeling of biomechanical systems used for
the analysis of human movement within the framework of multibody dynamics, for those enrolled in engineering, clinical,
rehabilitation and sports applications. The review includes detailed and generic models, as well as the main methodologies
applied to model muscle activation and contraction dynamics. Numerous skeletal, musculoskeletal and neuromusculoskeletal
models with variable degrees of complexity, accuracy and computational efficiency were identified. An important remark
is that the most suitable model depends on the study objectives, detail level of the depicted anatomical structures, target
population or performed motion. Summarizing, biomechanical systems have evolved remarkably during the last decades.
Such advances allowed to gain a deep knowledge on how the human nervous system controls the movement during different
activities, which has been used not only to optimize motor performance but also to develop solutions that allow impaired
people to regain motor function in cases of disability, among other applications.

1 Introduction

The study of the human movement has been an object of
interest since classical Antiquity. However, the first quantita-
tive studies regarding human locomotion only appeared in
the 1880s with the pioneer works of Marey et al. [1]. They
allowed to progressively change the study of human motion
from a qualitative to a quantitative science.
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Nowadays, detailed analyses of the mechanics of the
human neuromuscular system can be easily performed in
a non-invasive approach using biomechanical models with
variable degrees of complexity. These models are mathe-
matical representations of a given biological system and can
be established with different numerical approaches, such as
multibody systems (MBS) methodologies [2—-5] or the finite
elements method (FEM) [6-8].

Multibody dynamics methodologies are numerical meth-
ods used to model and analyze multibody systems in a sys-
tematic and efficient way. To that purpose, these methods
require the definition of a set of parameters that completely
define the topology of the model under analysis. Such
parameters, commonly referred as generalized coordinates,
can be obtained using different multibody formulations
[9—-12]. These formulations enable the inverse and forward
dynamic analysis of large and complex systems [13], such as
full body biomechanical models containing several muscular
actuators and a high number of degrees of freedom (DoF),
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which is fundamental when studying the dynamics of human
movement.

In the beginning, multibody dynamics was used in simple
systems composed of rigid bodies and ideal joints. However,
due to the numerous advances in these numerical methods,
nowadays they provide an efficient and accurate solution to
analyze and simulate the behavior of very complex systems,
with a high number of degrees of freedom or linearly and
nonlinearly elastic multibody systems with non-ideal joints
[14]. Moreover, such efficiency allows the use of multibody
dynamics even in real-time applications [15, 16].

The FEM is a computational technique that enables the
spatial and temporal discretization of continuum models into
a finite number of non-overlapping elements [17]. Such ele-
ments, have a simple geometry and are usually designated as
finite elements or elements. This method allows to replace
the differential equations that govern complex dynamic sys-
tems with algebraic equations for each element [18, 19].
Since the model is composed by many elements, the number
of algebraic equations that describe the model becomes very
large. Moreover, this method is time consuming and requires
a high level of information on the system, such as, the type
and number of the elements of the mesh (a set of points and
cells connected to form a network), and the materials proper-
ties (density, young’s modulus, Poisson ratio) [20].

The FEM provides the system’s state of stress and defor-
mation (local effects), producing more accurate results and
allowing more versatile investigations than the MBS meth-
odologies. Hence, FE models are applied in cases in which
localized structural deformations or soft tissues need to be
described and analyzed in detail such in the study of bone
remodeling [21, 22], to address the performance of joint
implants [6, 23], to perform articular cartilage tissue engi-
neering [24], or to estimate muscle forces [25]. Although
widely used in the field of biomechanics, FEM are out of
the scope of this work. Consequently, only biomechanical
models develop or used within the framework of multibody
system dynamics will be included.

Due to their simplifying premises, MBS methodologies
allow the study of forces and/or displacements at a lower
number of body points (global effects) when compared with
a typical FE mesh. Within the scope of biomechanics, multi-
body dynamics are widely applied in areas such as, sports,
clinical, rehabilitation or ergonomics to enhance human
performance [26, 27], to improve prosthesis design [28], to
identify asymmetries between limbs after injuries [26] or to
characterize the loads associated with repetitive movements
[29]. Despite these differences, both methods have been suc-
cessfully applied in injury prevention [30, 31], equipment
design improvement [32] or movement techniques’ optimi-
zation [33-35].

According to Ezati et al. [36], biomechanical models can
be classified into skeletal (SK), musculoskeletal (MSK) or
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neuromusculoskeletal (NMSK) models. This distinction is
based on the number and type of anatomical structures con-
stituting each model. For each of these three classifications,
there are numerous examples of planar [37-39] and spatial
models [40-42]. Planar models represent a restricted num-
ber of DoF of the system and only allow a simple motion
analysis limited to the frontal and, more commonly, sagittal
planes. These models are typically less complex and require
less data to be implemented when compared with spatial
biomechanical models, which makes them a suitable solu-
tion to use in motion simulation or in the educational context
[39, 43].

On the other hand, three-dimensional modeling allows for
a more realistic definition of the motion of the anatomical
segments, as well as the forces produced. The complexity
and accuracy of those models are usually achieved through
an increase of the computational burden. There are biome-
chanical models which refer to the full body [44-46], and
others which target a more detailed anatomical structure,
including models of the upper body [47-51], lower body
[52-54], upper limb [55] or single segment models, such as
the foot [56-59].

Skeletal models are the least complex biomechanical
models since they only include segments and their inter-
connecting joints. When performing SK modeling under the
framework of MBS methodologies, the segments are usu-
ally defined as rigid bodies. Thus, the dimensions of each
segment are kept constant and the relative position of all its
points does not change during the analysis, which means
that only the DoFs associated with full body translations and
rotations are considered. However, in biomechanical models,
the no-deformation requirement is not completely fulfilled
during experimental data acquisition since, due to the dis-
placement of the human skin with respect to the bones, the
relative position of the markers at specific bony landmarks
varies. This phenomenon, usually referred to as soft tissue
artifact (STA) or skin motion artifact, can lead to an unreal-
istic motion of the model joints and inconsistencies during
the dynamic analysis [60].

The STA occurs due to inertial effects of the body seg-
ments (e.g., wobbling of the muscle and skin apparatus in
relation to the skeletal system), skin deformation and sliding,
gravity and muscle contraction [61] and is task- and subject-
dependent, which makes standard filtering techniques inef-
fective [62—-64]. To address this issue, several methods that
minimize the errors associated to the experimental acqui-
sition of anatomical points have been proposed, being the
optimization-based methods the most common approach
[65]. Despite the several methodologies employed to deal
with STA, the segments are usually defined as rigid bodies
in the framework of the modelling of biomechanical system
using MBS methodologies.
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An important issue that results from the rigid body
assumption is that this approach does not allow to meas-
ure bone strain, which is fundamental in bone remodeling
[66]. To overcome this issue, Nazer et al. [66] proposed the
use of flexible multibody dynamics. Regardless the adopted
approach (flexible or rigid), model segments represent
human anatomical segments, therefore it is fundamental that
their inertial parameters are similar to those measured in
the human segments to ensure the accuracy of the dynamic
outputs produced by the biomechanical model [67-70].

The selection of the joints’ topology defines the complex-
ity of the biomechanical model, as well as its total number of
DoFs. In planar biomechanical models, all kinematic pairs
are usually modeled as ideal hinge joints [71], although
other mechanical models have been used [3, 72, 73]. In turn,
the spatial models can also include joints with out-of-plane
motion, such as ball and socket, condyloid, gliding, saddle,
hinge, and pivot joints, which are represented by their equiv-
alent mechanical model, that is, spherical, plane, universal,
hinge and pivot joint kinematic constraints [74], respec-
tively. Literature review also allowed to identify examples
of spatial model in which non-ideal joints have been suc-
cessfully used [75]. An important point is that the modelling
approach will greatly influence the dynamic response of the
multibody system [76, 77].

Depending on the characteristics of each joint model, dif-
ferent procedures are used to correctly calculate its center or
axis of rotation [78]. These processes allow to obtain the ori-
entation of the local reference frame of each segment, which
compromises the accuracy of the results from kinematic and
kinetic analyses [61, 79].

Despite their simplicity, SK models provide kinematic
and dynamic outputs of the movement, including segments
orientation, angular displacements, intersegmental forces
and/or moments using a non-invasive approach, however,
the intersegmental loads have no physical meaning because
SK models disregard muscle forces. These outputs are very
important to increase the knowledge about how different
individuals find unique solutions to the demands of a sports
or exercise task, under the various constraints of that task,
the environment and their own organism [80].

In contrast to SK models, which only comprise the mod-
eling of the anatomical segments and joints, MSK models
also include muscles. Muscle contraction plays a funda-
mental role in joint motion. Initially, the muscle receives
an electric signal from the nervous system that will result in
an action potential and produce a fiber muscle contraction.
The force produced during muscle contraction is transmit-
ted to the bones through tendons which will produce joint
motion [81, 82] The functional unit that produces joint
motion consists of the muscle fibers (muscle without its
tendinous attachments) and its respective tendon, that is,
the muscle-tendon unit (MTU) [81].

Consequently, MSK modeling involves selecting the most
appropriate muscle model and the most accurate method
for muscle parameters’ scaling, defining each muscle path
and solving the muscle redundancy problem with a suitable
optimization technique.

Amongst the developed mathematical models of human
skeletal muscles, the biophysical and the phenomenological
models are the most used in the context of biomechanics.
Biophysical or Huxley muscle models are physiologically
based and describe the muscle contraction mechanism with
great accuracy. The force produced by each cross-bridge
between miosin and actin filaments is calculated and the
sum of all those contributions provides the total muscle
force [83]. From a mathematical perspective, a set of com-
plex partial differential equations represents the physics of
these models, which results in a high computational cost
and limits their application within the framework of MBS
formulations [84, 85]. In contrast, phenomenological or Hill
type models are simplified physical models used to describe
the force-producing properties of the skeletal muscle when
subjected to imposed patterns of lengthening and shortening
[86]. They are widely used in MSK modeling due to their
simplicity, low computational cost, large experimental data
set regarding specific model parameters and accurate predic-
tions of muscle force [87-90].

Hill type models require a set of parameters to provide
force estimations, such as (i) optimal fiber length—Iength
at which the maximum active force is generated; (ii) ten-
don slack length—length at which the tendon starts resist-
ing to stretch; (iii) muscle pennation angle—angle meas-
ured between the muscle fibers and tendon; (iv) maximal
isometric muscle force—estimated with the physiologic
cross-sectional area (PCSA) [87] or obtained from available
databases [91] and (v) state of the system—Iength and con-
traction velocity of the muscle fibers. Some of these param-
eters can be directly measured via ultrasound or magnetic
resonance imaging (MRI) [92], while others require an indi-
rect estimation from MRI [93], surface electromyography
(sEMG) [94], and experimental measurements in cadaveric
specimens [95]. According to Ackland et al. [96] and Xiao
et al. [97], researchers should use these procedures to obtain
subject-specific parameters of the individual under analysis.
The use of generic muscle parameters is inappropriate due
to the high sensitivity of MSK models’ force production
to these parameters [98—102]. However, the construction of
subject-specific models is often impractical, as it can be too
expensive and extremely time consuming. The most com-
mon approach consists of applying generic MSK models
based on data available in the literature, and scaling them to
the subject under analysis [103]. According to Winby et al.
[104], scaling should be performed using anthropometric
and functional data of the subject of interest, that is, bone
dimensions and moment-generating characteristics [105,
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106], respectively. Moreover, the muscle parameters can
also be tuned considering the EMG data and optimization
techniques [107].

Every human muscle connects to the bones by means of
tendons, spans one or several joints and bypasses several
anatomical structures. From a computational point of view,
each muscle is defined as a line that passes through a set of
points, called via points. These are defined with respect to
the anatomical segment crossed by the muscle and define
the muscle path and its line of action. The detailed descrip-
tion of the via points of each human muscle is available on
anthropometric tables, such as the one presented in Yama-
guchi [108] or Carbone et al. [109]. In particular, the last
one presents a detailed description of the lower limb muscle
apparatus.

The accurate definition of the muscle path and line of
action of each muscle plays a key role on the estimation
of muscle forces and joint torques. The simplest model to
address this issue uses a straight line between the muscle
origin and the insertion to represent the muscle path [110].
However, for most muscles, as they may pass through bones
or other tissues, this model represents an inaccurate mus-
cle path. To overcome this limitation and accurately repre-
sent muscle paths, Garner et al. [110] proposed a method
in which the muscle path is defined by several via points
that wrap around anatomical structures. However, in some
cases this method is not anatomically accurate since not all
anatomical structures can be represented by such simple
solids. To address this issue, several approaches such those
presented by Gao et al. [111], Stavness et al. [112], Scholz
et al. [113] or Hammer et al. [114] are available.

The number of muscles of the human body largely sur-
passes its number of DoFs [81], which means that, in aver-
age, each DoF is controlled by more than one muscle. This
muscle redundancy allows the human central nervous system
(CNS) to have infinite possibilities of muscle actuation to
perform any motion. In case of injury, muscle redundancy
allows the subject to still perform a given task by recruiting
different muscles, which can be less efficient, but it provides
a temporary alternative until recovering full functionality.
From a mathematical point of view, muscle redundancy
means that the number of unknown variables (musculo-ten-
don forces, muscle activation, or neural control) surpasses
the number of independent equations of motion (body’s
DoFs), which results in an indeterminate system with an
infinite number of possible solutions. To solve this prob-
lem, optimization techniques [108] are applied to find the
combination of musculo-tendon forces that minimizes a
particular cost function, which is a mathematical formula
used to calculate a particular parameter, such as the sum of
musculo-tendon forces. Although several cost functions have
been proposed [115, 116], the determination of muscle force
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distribution remains one of the most fundamental problems
in biomechanics.

Briefly, MSK models estimate the body’s kinematics,
intersegmental forces, joint moments, and also muscle
forces. Although they mimic complex MSK systems [117],
they disregard muscle excitation contraction (EC) coupling
dynamics, which is also referred as activation contraction
dynamics, and only deal with the muscle contraction dynam-
ics. This is a significant drawback, since EC dynamics, is the
process that relates the neural signal that arrives at a motor
neuron and the muscle activation level. Therefore, MSK
models neglect the process that inhibits the instantaneous
activation or relaxation of the muscle, also known as elec-
tromechanical delay, and produce a physiological inaccurate
instantaneous muscle force [36].

Neuromusculoskeletal models overcome the limitations
of MSK models since they include a full representation
of the excitation—contraction coupling (ECC) dynamics
of the muscle. Briefly, these models comprise three main
components: (i) “neuro”, which includes the ECC dynam-
ics, (ii) “musculo”, which represents the muscle activation
dynamics, and (iii) “skeletal”, which relates to the skeletal
dynamics.

These models not only provide kinematic and joint
moments outcomes of human movement, but also allow
to obtain muscle forces and the EC dynamics, which make
them suitable to identify the relationship between the neuro-
physiological and muscle levels [118]. Consequently, NMSK
models play a role on: (i) the understanding of impaired
and unimpaired limbs movements control, (ii) the study of
the response of impaired muscles to functional electrical
stimulation, (iii) the design of exoskeletons controlled by
myoelectric activity; (iv) the comprehension of the physical
mechanisms of muscle contraction in the analysis of neuro-
muscular control [119-122].

The major issue associated with NMSK models is the
modeling of the EC coupling dynamics. The EC dynamics
encompasses the process by which the electric neural control
signal is converted into the activation signal input of the
muscle—tendon model, and it is modeled by a first order dif-
ferential equation [87]. Since this system is time dependent
NMSK models require the use of dynamic or windowing
optimization techniques with a high computational cost.

Shortly, SK, MSK or NMSK modeling requires a deep
understanding of numerous topics and it lacks in the litera-
ture a single work describing and reviewing them in detail.
The main goal of the present study is to provide an over-
view of the most relevant topics related to the modeling of
the components of SK, MSK and NMSK systems within
the framework of MBS formulation [2] for those, not only
with an engineering background, but also for those enrolled
in the fields of clinical, rehabilitation, or sports sciences.
Application cases of each model type and its main features
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are also under the scope of this work. To that purpose, the
methodology of narrative reviews will be used.

The remaining of this paper is organized as follows. In
Sect. 2, the research methods used to obtain the records that
supports the main findings of this manuscript are presented.
Detailed analysis and discussion of the modeling issues
related to the main components of SK, MSK or NMSK are
presented in Sects. 3 to 5, respectively. Finally, the conclud-
ing remarks of this study are provided in Sect. 6.

2 Methods

In the following subsections, an explanation of the method-
ology carried out to choose the studies to be included in this
review is provided. The definition of the search strategy is
described, followed by the selection process of the studies.
This section ends with the results obtained from the applica-
tion of the referred methodology.

2.1 Search Strategy

Published studies were identified using Web of Science,
SCOPUS and MEDLINE/PUBMED electronic databases,
since these contain the large majority of works presenting
or applying biomechanical models in the context of human
movement analysis. The search was performed by two inde-
pendent researchers, restricted to studies published until
April 30, 2021, and included the following keywords: skel-
etal models, inertial parameters, joints model, musculoskel-
etal models, muscle models, muscle path, muscle scaling,
tendon models, EC coupling, biomechanical cost functions,
neuromusculoskeletal models, which were combined using
AND/OR/NOT Boolean operators.

2.2 Study Selection

After duplicate removal, the titles and abstracts of relevant
articles resulting from database search were screened by two
independent researchers. As inclusion criteria, studies that
addressed (i) the development and/or use of skeletal, mus-
culoskeletal or neuromusculoskeletal biomechanical mod-
els for the analysis of human movement, (ii) modeling of
segments, joints, MTU, ligaments and ECC, were selected
during the screening process.

When the title or abstract did not clearly indicate whether
an article should be included, then the complete article was
obtained, and its full text was carefully reviewed. At this
stage, articles, conference articles or proceedings and books
that were not written in the English language or that con-
tained models developed within the framework of the Finite
Element Method (FEM) were excluded. After the application
of these eligibility criteria, articles, conference proceedings

and books that included skeletal, musculoskeletal or neuro-
musculoskeletal models of the human body were selected
for inclusion in the review. Finally, additional references for
this review were obtained by analyzing the bibliographic
references of the selected articles.

2.3 Results

A large number of works were initially identified by apply-
ing the methodology presented in the previous subsections.
Consequently, a word count was not performed during these
stages. After the removal of duplicated and non-eligible
works, 388 publications were considered relevant to be
included in this review. It is important to note that these
publications, which are compiled on Tables 1, 2, 3, 4, 5 and
6, were selected according to their historical relevance or
innovative approach in the area of the development of bio-
mechanical models and movement analysis.

The included models/methodologies were divided into
three major groups according to the anatomical/physio-
logical structures they represent: (i) Skeletal Models (SK),
which present the tools to properly define the body segments
(anthropometry and inertial parameters) and anatomical
joints; (ii) Musculoskeletal Models (MSK), that explore the
computational models for depicting the muscle, tendon and
ligament active and passive behavior; and Neuromusculo-
skeletal Models (NMSK), which describe the muscle activa-
tion dynamics. Additionally, a subdivision was considered
for the elements that compose these models. For the SK
models, a sub-division in methods used for segment and
joint modelling was performed. In a similar way, the MSK
models were sub-divided into seven sections, addressing the
modelling of the musculotendon unit (MTU) and ligaments,
computational models for representation of the MTU and
ligaments, methodologies for scaling and defining the mus-
cle path and finally strategies for solving the muscle redun-
dancy problem. Finally, the NMSK were sub-divided into
models for describing the excitation contraction coupling
and the computational methodologies required for describ-
ing this behavior. A section of application cases presenting
different models and discussing their major issues is also
presented at the end of each section.

3 Skeletal Models

The human musculoskeletal system is composed of the skel-
eton, muscles, ligaments, tendons, joints, cartilage, and other
connective tissues. However, the SK models usually only
include the representation of the skeleton and the joints.
From a mechanical point of view, the skeleton plays a
fundamental role in supporting the body and protecting the
internal organs. Together with the joints and muscles, the
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combined trunk, upper arms, forearms,

16—Head/neck, upper trunk, lower trunk,
hands, thighs, legs, and feet
hands, thighs, shanks, and feet

14—Head, trunk, upper arms, forearms,

Body segments

Segment volume, CoM position, and
principal moments of inertia

Segment relative body segment mass,
CoM position, and radii of gyration

BSIPs

Sample size
19
147

M: 69.5 Years (Mean)
F: 67.4 Years (Mean)
CG: 82.9_+ 7.0 Years

1G: 82.3 £ 6.6 Years

Age

&F
&F

Population characteristics

Gender

M
M

Year
1994
2015

Jensen and Fletcher. [186]
[187]

Ho Hoang and Mombaur

Author

M male, F female, /G Intervention Group, CG Control Group, — non available

*Stage two of Tanner’s (1962) five-stage pubescent rating

17" Based on the original work of McConvile

""Based on the original work of Chandler
T"Based on the original work of Zatsiorsky

"Based on the original work of Clauser

Table 1 (continued)

Population

skeleton contributes to enable the human motion, since it
allows to increase the mechanical advantage of the muscu-
loskeletal system (i.e., the ratio of the force that performs
work to the applied force). On the other hand, the joints
promote or constrain the relative movements between seg-
ments, which define the number and type of DoFs, as well
as their admissible range of angular motion.

The modeling approaches of both segments and joints
affect the accuracy of the kinematic and dynamic outcomes,
and the most relevant issues associated with it, consist of (i)
defining the type of segment model and its respective iner-
tial and geometrical parameters, and (ii) selecting the joint
model and the method to estimate its respective joint axis or
center of rotation. Having this in mind, in the following sec-
tions these issues are comprehensively addressed/reviewed.

3.1 Segments

Within the framework of MBS methodologies, the bodies to
be modeled can be treated as rigid or flexible. The flexible
multibody systems are composed of both rigid and flexible
bodies [14], and they are commonly used in areas where
those bodies experience deformations with a magnitude
comparable to their global space motion such as such flexi-
ble robots, precision machinery, road vehicles and aerospace
systems [123]. The flexible multibody approach is rarely
employed in the modeling of biomechanical systems for the
analysis of human motion since its computational cost is
very high for dynamic analysis of the entire system [124].
In rigid multibody dynamics, all bodies are considered to be
rigid, which means that the bodies do not bend, stretch, or
compress. For a detailed explanation of the physics behind
rigid multibody systems, many textbooks and research
papers are available [9, 125-129].

Body segment inertial parameters (BSIPs) comprise the
mass, position of the center of mass, and moments and prod-
ucts of inertia of the segments of the human body. These
parameters, excluding the products of inertia, are the ones
with the greatest sensitivity when performing an inverse
dynamic analysis [70]. The segment’s inertia and position
of the center of mass are typically obtained from databases
available in literature and computed as percentages of the
subject’s body mass and segment’s length, respectively. In
contrast, other parameters, such as the subjects’ mass and
height or the segments length, can be directly measured.
Due to differences between the anthropometric characteris-
tics of the subject under analysis and those used to create the
generic database it is necessary to adjusts these quantities
to a specific subject. This procedure, is commonly known
as scaling,

In the field of biomechanics applied to human motion,
BSIPs are essential for the study of intersegmental moments,
angular momentum, mechanical work and whole body
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Table 2 Predictive methods used to estimate the shoulder and hip
joint centers

Author Year Joint
Andriacchi et al. [244] 1980 Hip
Bell et al. [245] 1989

Davis et al. [237] 1991

Seidel et al. [246] 1995

Shea et al. [247] 1997

Harrington et al. [239] 2007

Hunt et al. [248] 2008

Weinhandl and Connor [249] 2010

Hara et al. [238] 2016

Meskers et al. [240] 1997 Shoulder
Campbell et al. [250] 2009

dynamic stability [68, 130]. These parameters vary through
the lifespan of the human subjects due to alterations in the
size and shape of the body segments. These alterations are
caused by: (i) rapid changes in growth during infancy, (ii)
obesity or pathological issues, and (iii) aging conditions in
old age, such as bone and muscle mass decrease or adipos-
ity increase, among others [131]. Furthermore, BSIPs can
also change during muscle contraction, due to the changes
in mass distribution, as reported by Pain and Challis [132].

According to Cizgin et al. [133], BSIPs can be estimated
with different methods, namely: (i) Statistical models; (ii)
Geometrical models; (iii) Dynamic parameter estimation
methods or (iv) Medical imaging-based technologies.

The most used techniques to estimate BSIPs are based
on statistical models, namely anthropometric tables and the
regression equations [68], usually based on the subjects’
body mass and segment’s lengths of cadaver samples. These
equations are developed based on samples with different

sizes and anthropometric characteristics, which, together
with the differences in tissue composition and morphology
between the cadaver samples and a given human subject, can
lead to errors on the parameters estimation [134]. Although
several authors developed specific equations for particular
populations, the most used regression equations [135-139]
are inappropriate to atypical populations as children, elder-
lies, obese, individuals with prostheses, amongst others [68].
Despite providing accurate estimations for the segments’
mass and center of mass location (within 10% error), the
regression equations are unreliable in estimating the remain-
ing inertia parameters since, these errors may vary between
10 and 40% [140-142]. Table 1 presents a list of anthropo-
metric datasets available in literature to estimate BSIPs for
several populations, such as infants, children, adolescents,
and adults. Moreover, for each method, the sample gender
and the respective segments are also presented.

An alternative approach to obtain such parameters is
using geometric models of the human body [140]. Their
most relevant advantages are: (i) detailed modeling of the
shape and density of a segment; (ii) no assumptions on
segmental symmetry; (iii) accurate modeling of male and
female subjects with different body morphology, (iv) valid
for children, pregnant or obese subjects; and (v) adjustable
densities of specific parts of some segments. Nevertheless,
direct anthropometric measurements are required to scale
the model and reduce overall error of the analysis, which is
their main drawback [140].

To reduce the time spent with these measurements, Clark-
son et al. [143] proposed a method to obtain the body’s vol-
umes based on three dimensional (3D) scanning using four
depth sensors and random sample consensus optimization
to identify and exclude outliers in the sample. Peyer et al.
[144] suggested a low-cost body scanner that reconstructs
the surface of a 3D object from multiple uncalibrated two

Table 3 Functional methods to estimate the shoulder and hip joint center

Transformation techniques Sphere fitting
Method Joint Method Joint
Centre Transformation Technique [256, 259] Hip & Shoulder Algebraic Sphere Fit Method (ASF) [247, 260, 261] Hip & Shoulder
(CTT)
Holzreiter Approach (HR) [262] Bias Compensated Algebraic Sphere [263]
Fit Method (bcASF)
Helical Pivot Technique (HPT) [264] Geometric Sphere Fit method (GSF) [256, 265]
Minimal Amplitude Point (MAP) [266] Incomplete Algebraic Sphere Fit [263, 267]
Method (iASF)
Monte Carlo Pivoting (MCP) [268]

Revised Functional Method (RFM) [269]

Symmetric Centre Of Rotation Estima- [253]
tion (SCoRE)

Schwartz Transformation Technique [270]
(STT)

@ Springer
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Table 4 Examples of marker set protocols used for SK modelling

Category Author Year Model name N. Segments Segments N. Markers
Ankle Nair [294] 2010 - 1 Ankle 3
Fullbody Vicon [208] 2002  Plug-In-Gait 15 Head, Thorax, Upper Arm, Forearm, 39
Hand, Pelvis, Thigh, Leg, Foot
Rabuffetti [44] 2004 - 16 Upper Arm, Forearm, Pelvis, Thigh, 33
Shank and Foot
Begon [279] 2008 - 14 Upper limbs, Shoulder girdle, Torso- 16
Head, Pelvis, Thighs, Shank-Foot
Guilbert [16] 2019 25 Head, Thorax, Upper Arm, Forearm, 70
Hand, Pelvis, Thigh, Leg, Foot, All
vertebrae
LowerBody Kadaba [52] 1990 Helen Hayes 7 Pelvis, Thigh, Shank, Foot 7
Benedetti [295] 1998 - 7 Pelvis, Thigh, Shank, Foot 43
Frigo [278] 1998 - 7 Pelvis, Thigh, Shank, Foot 15
Nadeau [54] 2003 - 8 Foot, Legs, Thighs, Pelvis, Trunk 25
Leardini [280] 2007 - 7 Pelvis, Thigh, Shank, Foot 26
Donati et al. [296] 2008 3 Pelvis, Thigh, Shank 16
Duffell [281] 2014 - 7 Pelvis, Thigh, Shank, Foot 36
LowerBody + TrunkUpperArm Krosshaug [297] 2005 - 21 Head, Neck, Collar, Chest, Upper 33
Arm, Forearm, Hand, Abdomen,
Pelvis, Thigh, Shank, Rearfoot,
Forefoot
Shoulder Jackson [284] 2012 — 4 Thorax, Clavicle, Scapula, Humerus 35
Haering [285] 2014 - 4 Thorax, Clavicle, Scapula, Humerus 45
Spine Hidalgo [230] 2012 - 6 Upper and Lower thoracic spine, 9
Total lumbar spine, Shoulder
segment
Thorax Kiernan [283] 2014 Central Remedial 1 Thorax 3
Clinic Thorax
Model
Armand [282] 2014 - 1 Thorax 27
Trapezio Metacarpal Cerveri [298] 2008 - 1 Trapezio-Metacarpal Joint 9
UpperBody Schmidt [299] 1999 - 6 Upper Arm, Forearm, Hand 11
Lloyd [300] 2000 - 6 Upper Arm, Forearm, Hand 13
Hingtgen [47] 2006 — 5 Trunk, Upper Arm, Forearm 14
Sybelle [49] 2006 - 9 Thorax, Clavicle, Upper Arm, Fore- 17
arm, Hand
vanAndel [301] 2008 - 8 Thorax, Acromion, Lateral Upper LED
Arm, Forearm, Hand
Rettig [48] 2009 - 7 Thorax, Clavicles, Upper-arms, 14
Forearms
Fohanno [302] 2013 - 5 Thorax, Shoulder, Arm, Forearm, 29
Hand
Wrist+Hand Metcalf [287] 2008 - 8 Wrist, Metacarpal Arch, Fingers, 26

Thumb

@ Springer
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Table 4 (continued)

Category Author Year Model name N. Segments Segments N. Markers
Multi Segment Foot Models Arampatzis et al. [303] 2000 - 7 Tibia and Fibula, Talus, Calcaneus, 18
Navicular, Cuneiforms, Metatarsals
I, IT and III, Cuboid and Metatarsals
IV and V, Phalanges I, II and III,
Phalanges IV and V
MacWilliams et al. 2003  Kinfoot 9 Hallux, Medial Lateral toes, Medial 19
[289] and lateral forefoot, Calcaneus,
Cuboid, Talus / Navicular / Cunei-
forme, Tibia/Fibula
Hwang et al. [288] 2004 - 10 Hallux, Medial and Lateral toes, 16
Medial and Lateral forefoot, Calca-
neus, Cuboid, Talus, Tibia/Fibula
Davis et al. [218] 2006  Shriners Hospital 3 Shank, Forefoot and Hindfoot 12
for Children
Kitaoka et al. [304] 2006 — 3 Shank, Hindfoot, Midfoot, Forefoot 11
Pohl et al. [305] 2006 — 3 Shank, Rearfoot, Forefoot 14
Simon et al. [290] 2006 Heidelberg Foot 10 Tibia, Navicular, Medial Arch, 17
Measurement Lateral Arch, Hindfoot, Midfoot,
Forefoot, Hallux, Metatarsal I,
Metatarsal V
Jenkyn and Nicol 2007 - 6 Thigh, Shank, Hindfoot, Midfoot, 24
[306] Medial forefoot, Lateral forefoot
Leardini et al. [53] 2007 Rizzoli Foot Model 5 Foot overall, Shank, Calcaneus, 20
(RFM) Midfoot, Metatarsus
Rao et al. [307] 2007 - 4 Shank, Calcaneus, Forefoot, First 12
Metatarsal
Cobb et al. [308] 2009 Cobb foot model 4 Shank, Rearfoot, Calcaneonavicular, 33
Medial forefoot, First metatar-
sophalangeal complex
Sawacha et al. [309] 2009 Padua foot model 4 Shank, Hindfoot, Midfoot, Forefoot 13
Hyslop et al. [310] 2010 - 6 Shank, Single Foot, Rearfoot, 28
Midfoot, 1% Metatarsal, Lateral
Forefoot, Hallux
Tulchin et al. [311] 2010 - 3 Shank, Hindfoot, Forefoot 8
Bruening et al. [312] 2012 - 4 Shank, Hindfoot, Forefoot, Hallux, 16
Foot
De Mits et al. [56] 2012  Ghent foot model 6 Shank, Hindfoot, Midfoot, Medial -
forefoot, Lateral forefoot, Hallux
Saraswat et al. [57] 2012 modified SHCG 4 Shank, Hindfoot, Forefoot, Hallux 14
(mSHCG)
Bishop et al. [313] 2013 - 4 Shank, Heel, Midfoot, Toe box 25
Chard et al. [314] 2013 - 5 Shank, Rearfoot, Forefoot, First 14
Metatarsal, Hallux
Nester et al. [315] 2014  Salford foot model 6 Shank, Calcaneus, Midfoot, Lateral 20
Forefoot, Medial Forefoot, Hallux
Seo et al. [58] 2014 - 5 Hallux, Hindfoot, Forefoot, Medial 15
forefoot, Lateral forefoot
Malaquias et al. [59] 2015 - 5 Shank, Fibula, Rearfoot, Midfoot, 17
Toes
Qosterwaal, et al. 2016 Glasgow—Maastricht 26 All feet bones 31

[219]

foot model

— Non available

@ Springer
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Table 5 Musculoskeletal models

Model Name Author Year Anatomical Segments Type Model  Software
GaitFullBody de Zee et al. [232] 2007 Lumbar Spine 3D Generic  AnyBody
Thoraco-Lumbar Spine Ignasiak et al. [226] 2015 Thoraco-Lumbar Spine 3D Generic
GaitFullBody Peng et al. [74] 2017  Full Body 3D Specific
GaitFullBody Skals et al. [392] 2017  Full Body 3D Generic
GaitFullBody Eltoukhy et al. [316] 2017  Full Body 3D Specific
GaitFullBody Bassani et al. [227] 2017  Full Body + Lumbar Spine (L4-L5) 3D Generic
GaitFullBody Kuai et al. [228] 2017 Full Body + Lumbar spine model (L2-L.3-L4) 3D Generic
- Malaquias et al. [213] 2016 Foot—Leg 3D Generic  Custom
Quental et al. [198] 2016 Upper Limb 3D Generic
- Wesseling et al. [102] 2017  Full Body (Hip Specific) 3D Specific
Lisbon Lower Extremity Quental et al. [23] 2019 Lower Body 3D Generic
Model (LLEM)
Ma’touq et al. [418] 2019 Hand 3D Generic
- Millard et al. [39] 2019 Full Body 2D Generic
Dumas et al. [43] 2019 Lower Body 2D Generic
- Holzbaur et al. [417] 2005 Upper Limb+Hand 3D Generic  OpenSim
- Hamner et al. [414] 2010 Full Body 3D Generic
- Arnold et al. [212] 2010 Lower Limb 3D Generic
Delf Shoulder Elbow Model Nikooyan et al. [412] 2011  Shoulder + Elbow 3D Specific
- Dorn et al. [413] 2012  Full Body 3D Generic
- Christophy et al. [415] 2012 Full Body + Lumbar Spine 3D Generic
- Martelli et al. [419] 2015 Full Body (Hip Specific) 3D Specific
- Raabe and Chaudari [229] 2016 Full Body + lumbar spine 3D Generic
London Lower Limb Model Moissenet et al. [437] 2017 Lower Limb 3D Generic
Lai et al. [448] 2017 Lower Limb 3D -
- Catelli et al. [436] 2019 Full Body 3D Generic
- Kim and Kipp [416] 2019 Fullbody + Multi segment foot 3D Generic
Table 6 Neuromusculoskeletal Author Year Category Type Approach
models
Jonkers et al. [475] 2002 Lower Limbs 3D Forward dynamics
Hase et al. [469] 2002 Fullbody 3D
Buchanan et al. [356] 2004 Shoulder + Elbow 3D
Koo and Mak [468] 2005 Elbow 3D
Seth and Pandy [480] 2007 Trunk + LowerLimb 2D
Doheny et al. [471] 2007 Elbow 3D
Ghafari et al. [481] 2009 Lower Limbs 3D
Kim et al. [473] 2011 Fullbody 3D
Thangal et al. [476] 2013 Fullbody 2D
Wang et al. [474] 2014 Ankle 3D
Buongiorno et al. [482] 2018 Shoulder + Elbow 3D
Rahmati et al. [479] 2018 Fullbody 3D
Allouch et al. [483] 2015 Finger 3D Inverse dynamics
Hoang et al. [368] 2019 Lower Limbs 3D
Quental et al. [75] 2018 Shoulder 3D
Stienen et al. [484] 2007 Spine 3D Neural network

@ Springer
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dimensional (2D) images taken from different positions
without any assumptions of the body’s geometry. Sheets
et al. [145] approach uses a laser scanner and an automated
pose and shape registration algorithm to segment the body
surface, and identifies the joint center positions to define the
body’s geometry and volume.

Dynamic parameter estimation methods, also referred to
as identification techniques, are based on the linear relation
between the inverse dynamics of a system and the inertial
properties of its segments [146—150]. This approach requires
the implementation of a dynamic model of the human body,
kinematic and kinetic data (e.g., ground reaction forces,
contact forces on segments, among others) of the move-
ment to analyze, and the application of optimization tools
to minimize the difference between the computational and
experimental results for the distal extremity kinetics. This
approach has been originally applied by Vaughan et al. [150]
in the analysis of three different planar movements, namely
running, long jumping and kicking. Fregly et al. [149]
extended this method, later referred to as Residual Reduc-
tion Algorithm (RRA), to the 3D analysis of human gait.

More recently, Venture et al. [151] presented a methodol-
ogy to estimate the standard inertial parameters on real-time,
which produced similar results for the limbs when compared
with the data from Young et al. anthropometric database
[152]. However, this methodology leads to physically incor-
rect estimation of some parameters, such as negative seg-
ment’s masses or non-positive definite inertia matrix. To
address this problem and eliminate the referred physical
inconsistencies, Jovic et al. [153] used the hierarchical quad-
ratic programming optimization technique [154], which also
estimates the BSIPs of limbs with different masses. This is a
significant advantage when compared to methods based on
anthropometric databases, which assume that left and right
sides of the human body are fully symmetric [150]. Hansen
et al. [155] proposed a novel method that presents smaller
errors in the estimation of the BSIP parameters when com-
pared to the approach proposed by Dumas et al. [69].

Medical imaging technologies include MRI [156-159],
computed tomography (CT) [160] and gamma-mass scan-
ning [161-163], which allow to obtain accurate measures
of the internal structures of the human body, such as the
tissue composition, providing a rigorous estimation of sub-
ject-specific parameters. However, they are time consuming
and expensive, which limits their application in large-scale
clinical studies.

In summary, BSIPs are key parameters during the
dynamic analysis of human motion [68]. An important step
to obtain accurate BSIPs is the scaling of these parameters
obtained from generic databases to the subject under analy-
sis. Usually, this procedure is performed based on subject’s
anthropometric characteristics such as, weight, height, seg-
ments length, and gender.

Although, the BSIPs obtained from regression equations
are more accurate for healthy older Caucasian males than
for females, children, or pathological subjects [68], they are
commonly used for all populations due to their expediency.
The major problems associated with the computation of the
BSIP include: (i) the difficulty to obtain subject-specific
parameters; (ii) the lack of parameters for specific popula-
tions such as child, elderly, obese or pathological; (iii) the
matching between the segment definition used for the BSIP
assessment with the biomechanical model construction; and
(iv) the differences in the estimation of BSIP when using
wobbling or rigid mass models.

Regarding the estimation of subject-specific BSIPs,
the approaches addressed before, namely the geometrical,
dynamic parameter estimation and the medical image-
based methods can be applied. However, Robert et al. [147]
showed that the estimation of these parameters, when using
the parameter estimation methods, is very sensitive to the
quality of the experimental data.

3.2 Joints

Human joints are complex structures composed of several
tissues, such as cartilage, synovial membrane, ligaments,
bursas, or synovial fluid, which interact with each other and
create internal loads that are transmitted to adjacent tissues
and anatomical structures. Joints play a fundamental role in
the relative angular movement of the segments since they
promote or constrain rotation about different DoFs. The
combination of the DoF of multiple joints leads to a con-
dition, designated DoF problem [188]. From a motor con-
trol perspective, it means that humans can choose between
different solutions to perform a desired motor task without
compromising its efficacy.

Despite their complexity, each human joint can be
approximated by a mechanical model with similar functional
capabilities. The selection of the appropriate joint model of
the biomechanical model is of great importance to attain
valid and reliable kinematic and dynamic outcomes. For this
purpose, mechanical joint models with variable degrees of
complexity have been developed, which can be classified
into ideal or perfect and non-ideal or imperfect joint models.

The ideal models neglect clearance, local deformations,
polycentric effects, wear, and lubrication effects. Most skel-
etal models present ideal joints, such as: (i) ball and socket
joint (three DoFs) to model the neck, the hip and shoul-
der joint [189]; (ii) universal joint (two DoFs) to model the
elbow and the wrist [189]; and (iii) the hinge joint (one DoF)
to model the knee and ankle joint [190, 191].

These approaches consider that joint rotations are not
coupled and, therefore, can be modeled as “open-loop” sys-
tems. However, several joints, such as the shoulder [4, 192],
the elbow and radio-ulnar [193], the knee [194, 195] or the
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ankle [196, 197] have a complex behavior, which requires
more sophisticated modeling assumptions. In those cases,
the joint rotations or the movement of the body segments
are coupled and “closed-loop” systems should be used [192].
Those systems have been successfully implemented both for
the modelling of lower and the upper limb joints as anatomy-
based constraints (e.g., isometric ligaments, sphere-on-plane
contacts), which mimic the physiological behavior of the
joints [192-194, 196-198]. To couple the joint transla-
tions and rotations, planar four-bar-linkage mechanisms
[199-201], spatial parallel mechanisms [195, 202], 5-rigid-
link parallel mechanism with rigid surface contact and iso-
metric ligaments [203], 6-link parallel mechanism [203], or
mechanisms incorporating articulating spheres constrained
by rigid ligaments [204] have been used for both the lower
and the upper limbs.

On the other hand, imperfect joint models have been used
when more realistic outcomes of joint internal loads are
required. These models involve several challenging aspects,
such as computing the contact-impact forces due to colli-
sions between the bodies or the hydrodynamic forces owing
to the lubrication effect [205]. One example of this approach
is the work presented by Quental et al. [198] in which the
shoulder was modeled as an imperfect joint with clearance.
More complex and detailed joint models include the subject-
specific joint models in which the geometry of the articulat-
ing surfaces is obtained using MRI or CT images. The elbow
model developed by Terzini et al. [206], composed of the
humerus, the ulna, the radius, the ligament complexes and
the intraosseous membrane, or the knee model developed
by Dzialo et al. [207], with a moving tibiofemoral axis, are
representative of such complex models.

The selection of the correct procedure to estimate the
joint center or axes of rotation is crucial to define the ana-
tomical reference frame of the segments, and it varies sub-
stantially according to the selected joint. If the joint coordi-
nates are incorrectly computed, the results obtained during
the kinematic and dynamic analyses will be affected due to
incorrect segment orientations [61, 79]. For the ankle, knee,
elbow and wrist joints, the most popular approaches are: (i)
the midpoint between two anatomical landmarks, or (ii) a
combination of markers and anthropometric measures [208].

More complex knee joint models have been proposed,
which include the tibio-femoral and patello-femoral joints,
as the overall knee movement results from the coupled
motion between these two joints [209, 210]. Rajagopal
et al. [209] applied the method proposed by Walker et al.
[211] to couple the tibia rotation and translation with the
knee flexion angle. Moreover, the kinematic behavior of
the patello-femoral joint is computed using the knee flexion
angle and the method proposed by Arnold et al. [212]. On its
turn, Favier et al. [210] presented a knee model in which the
patello-femoral joint is modelled as a hinge/revolute joint.

@ Springer

Other models present mathematical approaches to estimate
the effective moment arms of the quadriceps muscles taking
into account the polycentrism of the knee joint and the lever
and spacer action of the patella. These can predict with more
accuracy the effective moment arms from the knee instanta-
neous positions, namely the flexion angle, and anthropomet-
ric parameters related to the patella [73].

Regarding the ankle, more complex models, including
those presented by Rajagopal et al. [209] and Malaquias
et al. [59, 213], can be found in literature. In both studies,
the talocrural and subtalar joints are independently modelled
as a revolute joints, considering the non-intersecting lines-
of-action of the two joints [214]. In particular, to eliminate
the dynamic issues pointed out by Anderson and Pandy 1999
[215], namely the increase of the integration time as the
result of the small mass of the talus segment, Malaquias
et al. [59] presented an ankle model, in which this segment is
modelled as a massless link. This way, the kinematic action
of the talus is modelled resorting only to kinematic con-
straints, avoiding the explicit definition of the segment.

Different foot models, with different complexity levels,
can be found in literature [216, 217]. They vary from sim-
plistic models, in which the foot is represented only by one
[5] or two segments [218], to complex representations of the
foot that considers all foot bones and joints [219].

Many approaches have been used to model the human
trunk, varying with the objectives of the study. The simpler
ones consider that the upper body (trunk, upper limbs, neck
and head) is defined as a single rigid body, usually referred
to as HAT model (Head—Arms-Trunk) [220-222]. More
complex models divide the trunk into thorax and abdomen
[223, 224] or into other specific segments, such as the cervi-
cal [225], thoracic [226], or lumbar spine [210, 227-229].
Even more detailed models represent the upper and lower
thoracic and lumbar spine [230]; the thoracolumbar spine,
including each individual vertebrae, ribs, and sternum [231];
or all the vertebrae [16, 232, 233]. To define the instantane-
ous center of rotation of the lumbar vertebrae, Pearcy and
Bogduk [234] used the Reuleaux technique [235], while
Bruno et al. 2015 [231] considered the geometric center
of the intervertebral disk as the center of rotation of the
intervertebral joint models. Although these methods enable
the computation of the intervertebral joints for each pair
of vertebrae, it is important to note that the spine is largely
affected by STA, and, therefore, the coordinates of the mark-
ers placed in each vertebrae must be used with caution [210].
To overcome this problem, White et al. proposed that the
movement of specific parts of the spine, such as the lumbar
spine, could be estimated as a linear function of the overall
movement of the spine [236].

The shoulder and hip joints require more complex pro-
cedures than just a midpoint between two landmarks since
the anatomical landmarks do not allow for a direct definition



On the Modeling of Biomechanical Systems for Human Movement Analysis: A Narrative Review

of their center of rotation. To overcome this limitation,
researchers use regression methods based on anthropomet-
ric measures [237-240]. These methods yield non negligible
errors due to skin movement artifacts [241, 242]. Additional
errors may arise from the selection of inaccurate anthropo-
metric predictors for the regression equations [243]. Table 2
lists several predictive methods used to compute the hip and
shoulder joint location.

Despite their advantages, they neglect the variability of
the anatomical structures due to diseases, such as cerebral
palsy, which leads to musculoskeletal deformities, or matu-
ration, since regression methods are usually developed based
on healthy people [239]. In this sense, functional methods
have been used to estimate the hip and shoulder joint centers
[251], which tend to provide more accurate results than the
regression methods [78, 251, 252]. Using these methodolo-
gies, geometric or optimization methods are applied to the
kinematic data (i.e., markers coordinates) of the segment
of interest during multi-plane movements, collected during
a short period of time [78]. Sphere fitting approaches and
transformation techniques are examples of existing proce-
dures within functional methods. In the former, a sphere is
fitted to a set of identified coordinates belonging to a particu-
lar anatomical segment, while in the latter, a local coordinate
system is defined for each time frame using the markers on
each segment. Finally, all local systems are transformed into
a common reference system that enables the estimation of
the time-independent joint parameters [253].

Recent studies showed that the duration of the trial used
to acquire the kinematic data of the segment of interest, the
range of motion of the segment [78, 254], the subject’s gen-
der [254], the algorithm used to compute the center or axis
of rotation and the location of the retro-reflective markers
affect the estimation of the results [255]. Despite their accu-
racy, even in restricted ranges of motion [256], these meth-
odologies may be difficult to apply in pathological subjects
with neuromuscular deficits [257, 258]. In such cases, Miller
and Kaufman [257] propose that the regression methods
should be used instead. Table 3 presents several functional
methods that may be used to determine the shoulder and hip
joint centers.

In summary, the methods presented in Tables 2 and 3 ena-
ble the computation of the shoulder and hip joint centers in a
non-invasive approach. However, according to Sangeux et al.
[271] and Lempereur et al. [272], the geometric sphere fit
method and the algorithm proposed by Gamage and Lasenby
[261] are the most accurate methods to compute the hip and
shoulder joint center, respectively. The results presented by
Sangeux et al. [271] are based on the comparison of several
functional methods with the results obtained when using a
new imaging system with low dose radiation, designated
EOS to estimate the hip joint center. In the shoulder joint,
Lempereur et al. [272] compared the results of different

algorithms with those obtained when using used a magnetic
resonance scanner.

To conclude, several studies showed that the functional
methods are more accurate than the predictive methods to
compute the shoulder and hip joint centers [252]. How-
ever, the predictive method suggested by the ISB [273] is
the most accurate to determine the sternoclavicular and the
acromioclavicular joint center [274], while the regression
method proposed by Rab et al. [275] should be used for the
glenohumeral joint [274]. Likewise, Fiorentino et al. [276]
demonstrated that the combination of predictive techniques
based on skin markers and dual fluoroscopy leads to more
accurate results in the estimation of the hip joint center.

3.3 Application Cases and Discussion

There are numerous SK models available in the scientific
literature. The Conventional Gait Model (CGM) developed
in the 80s was one of the first biomechanical models used
to compute 3D joint angles and moments using an inverse
dynamics approach [277]. At that, another biomechanical
model, later known as the Helen Hayes model, and very
similar to the CGM, was presented by Kadaba et al. [52].
These two models are a milestone in the history of biome-
chanical models, and precursors for a great number of mod-
els with different degrees of complexity developed since
then (Table 4).

The first SK models had a limited number of segments,
since the cameras used could only acquire a reduced number
of markers per anatomical segment. Thus, only the main
anatomical segments, such as the pelvis, the thigh, the shank
and the foot, were represented [52, 278]. Over time, SK
models became more complex, more anatomical structures
were represented and modeled with more detail [48, 49,
208, 279-281]. The thorax models of Hidalgo et al. [230],
Armand et al. [282] and Kiernan et al. [283], the shoulder
models of Jackson et al. [284] and Haering et al. [285] or the
wrist models of Cerveri et al. [286] and Metcalf et al. [287]
are some illustrative examples of this increased complexity.
The most representative examples include the multi-segment
foot models presented by Hwang et al. [288], MacWilliams
et al. [289], Simon et al. [290], and Oosterwaal et al. [219],
which divide the foot in 10, 10, 11 and 26 segments, respec-
tively. The technological advancements led to this enhance-
ment in models’ complexity, since more cameras and with
higher resolution were used, which increased the number of
retro-reflective markers per segment.

The increasing number of SK models and their lack of
standardization in the presentation of kinematic data and in
the definition of local reference frames led to the publica-
tion of two manuscripts, regarding the upper limb and the
lower limb, by the International Society of Biomechanics to
create guidelines for modeling and reporting procedures of
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SK models between results from different research groups
[273, 291]. These guidelines include the anatomical land-
marks and planes used to define the local reference frames of
each body segment are presented allowing for a standardiza-
tion of the motion data between the different laboratories or
research groups. Despite these standards and guidelines, the
identification of the anatomical landmarks depends strongly
on the user’s experience, knowledge, and expertise, which
may lead to significant variations in the kinematic outcomes
across subjects [292].

When applied to the analysis of human movement, SK
models require experimental data that describe the motion
in study. Traditionally, acquisition systems based on markers
have been used, since these are considered the gold standard
in the area of motion analysis [293]. The set of markers,
commonly referred to as marker set protocols, are located at
relevant points or anatomical landmarks of the body, which
allow to depict the position and orientation of each model
segment. The main issue during the selection of a specific
marker set protocol is the relation between the parameters of
the biomechanical model and the information provided by
it. Some methods, such as those used to predict joint cent-
ers or BSIPs, require alternative points of interest that the
chosen protocol does not consider. Hence, adaptations to the
original marker set should be implemented or a different one
should be selected to allow for the acquisition and computa-
tion of the model parameters (e.g., segment lengths, rotation
axis, reference frames, among others).

Skeletal models have been applied successfully in popula-
tions with distinct characteristics, such as athletes [48, 279],
healthy [281, 283, 301] and pathological [47, 278], in differ-
ent age groups, namely children, young adults, adults, and
elderly [46, 48, 230, 278] and for different tasks, including
walking, running, jumping, functional tasks, among others.

Regarding the motion acquisition systems, although opti-
cal systems based on retro-reflective markers are consid-
ered the gold standard method, other technologies, such as
inertial motion units, light emitting diodes (LEDs), or depth
sensors, have been successfully employed [293, 316-318].

Nowadays, researchers can develop subject-specific SK
models using registration techniques [319], which align two
or more images of a specific anatomical structure captured
at different times and multiple view-points. This allows to
obtain accurate parameters regarding the morphology of the
subject under analysis [320], which strongly influences force
and moment predictions. The main limitation is the need of
medical images, in particular MRI, which increases the cost
of the analysis.

In summary, SK models have been widely used in popu-
lations with different age, gender, and health conditions.
Amongst these studies the anatomical segments, usually
treated as rigid bodies are simplified representations of
the human body, being the most common the following
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segments: head, thorax, upper arm, forearm, hand, pelvis,
thigh, leg, and foot.

In turn, the multisegment foot, ankle, shoulder, spine, tho-
rax or trapezio metacarpal models indicated in Table 4 rep-
resent the detailed modeling of a specific anatomical struc-
ture. Several techniques, such as retro-reflective markers,
clusters of retro-reflective markers, markerless systems, or
LEDS can be used to obtain the experimental data. Regard-
ing the definition of the joint’s axis or center of rotation
and the inertial parameters, several approaches are available
and must be selected according to the characteristics of the
subject under analysis. Thus, although limited to kinematic
and some dynamic outcomes, the SK models are crucial in
musculoskeletal modeling since they provide the bone-fixed
coordinate systems in which the musculotendon attachment
points, via points, and obstacles are expressed.

4 Musculoskeletal Models

Musculoskeletal models try to mimic complex MSK sys-
tems composed of bones, muscles, tendons, ligaments, and
other connective tissues that altogether provide function and
structure [117]. In contrast to SK models, in which only
kinematics, intersegmental forces, and joint moments are
computed [321], MSK models also provide muscle forces
and activations. For that purpose, MSK models include mus-
cle representations which require the scaling of the model
parameters, a computational method to compute the mus-
cle paths and an optimization technique to solve the muscle
redundancy problem. MSK models neglect muscle EC cou-
pling dynamics and only deal with the muscle contraction
dynamics. Finally, MSK models with ligaments also require
the computation of the ligament’s paths. A detailed explana-
tion of these topics, their working principles, advantages,
and limitations is given in the following sections.

4.1 MusculoTendon Unit (MTU)

Muscles are soft tissues composed of fibrous elastic and
excitable tissue that can contract and extend and play a fun-
damental role in human mobility, stability, posture, respira-
tion, digestion, vision, among others. There are three types
of muscles in the human body: skeletal muscle, smooth
muscle, and cardiac muscle. However, the skeletal muscle
is the only one that can be voluntarily controlled by the
electrical impulses transmitted by nerves [322]. They are
attached to the bones by means of tendons, and span one
or several joints, producing pulling forces that can generate
movement. The force exerted depends on the type of muscle
fiber [323], neural control [324], muscle physiological cross-
sectional area [325], muscle fiber arrangement [326], joint
angle displacement and velocity [326], body size [326], and
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the force—velocity and force—length relationships [327, 328].
Amongst these factors, the ones commonly used in MTU
computational models are the neural control, the muscle
cross-sectional area, the muscle fiber arrangement, and the
force—velocity and force—length relationships. The neural
control will influence the level of muscle activation which is
directly related to the muscle maximal force [323]. Accord-
ing to Fukunaga et al. [82] the ability of a muscle to produce
force is directly related to its physiological cross-sectional
area and muscle specific tension. The muscle architecture
(i.e., muscle fiber orientation with respect to the line of
action of the muscle force, also referred as pennation angle)
is also an important topic since during muscle contraction,
the fiber muscle rotates which changes the fraction of force
directed along the muscle’s line of action.

Figure 1 depicts the relations between normalized muscle
force (ratio between muscle force and maximal isometric
muscle force) and normalized fiber length (ratio between
actual muscle fiber length and muscle fiber length at rest),
and normalized muscle force and normalized fiber elonga-
tion velocity (ratio between actual muscle shortening veloc-
ity and muscle fiber maximum shortening velocity).

The muscle force vs. fiber length relation includes two
components, the active and passive force. The active force
results from the number of cross-bridges between the actin
and myosin filaments, and it achieves its maximum value
when the muscle is at rest since there is the largest inter-
action between the actin and myosin filaments [87]. This
part of the force—length relation plot is the so-called plateau
region. For higher lengths, the muscle stretches, and the fila-
ments tend to stray, which decreases the opportunities to
form cross-bridges. In turn, for lower lengths, the muscle
becomes compressed, which increases the lateral distance
between filaments and also decreases the number of cross-
bridges. On the other hand, the passive force, caused by the
elastic elements of the muscle fiber, is null when the muscle
length is lower than the resting length. For higher lengths, it
increases exponentially as depicted in Fig. 1a [87].

The rate at which the muscle changes length, for an acti-
vated muscle, also affects the force produced. This relation
was initially described by Hill [328] and it is illustrated in
Fig. 1b. The muscle lengthening corresponds to an eccen-
tric contraction in which a higher force is observed, while
the muscle shortening corresponds to a concentric contrac-
tion in which a lower force is produced. In fact, a maximum
force level is attained at a given lengthening velocity after
which the force no longer increases. In addition, any force
produced during a concentric contraction is lower than that
produced during an isometric contraction, that is, when the
rate of change of muscle fiber length is zero. Thus, the force
production capacity is inversely related to its contraction
velocity.

Tendons are viscoelastic structures composed of strong
flexible but inelastic fibrous collagen tissue (60-85%) and
non-collagenous extracellular matrix components, such as
cartilage oligomeric matrix protein, elastin, proteoglycans,
and inorganic components. Tendons withstand tension,
however, in contrast to muscles, they are unable to contract.
They connect the muscle to the bone, transmit and modulate
the forces from muscle contraction to the skeletal system
to promote movement or provide additional stability [329],
dissipate energy in abrupt movements and store and transfer
energy [330].

The mechanical properties of the tendon depend on
the collagen fiber diameter and orientation [331]. When
stretched, tendons exhibit a typical "soft tissue" behavior
with a stress—strain curve consisting of three distinct regions:
the toe region which starts with a very low stiffness that
progressively increases; the linear region with constant stiff-
ness; and the yield or failure region in which the tendon
stretches beyond its physiological limit.

Additionally, tendons hold viscoelastic properties, such
as creep (increasing deformation under constant load), stress
relaxation (decreasing tendency for the material to return to
its original shape when unloaded), and hysteresis (energy
dissipation during a loading and unloading cycle).

The main factors that affect the mechanical forces on ten-
dons are: (i) the type of muscle force produced (passive or
active), (ii) the type of movement (flexion—extension, adduc-
tion—adduction), (iii) the level of muscle contraction, (iv) the
tendon’s relative size (the greater the cross-sectional area of
a muscle, the higher force it can produce and the larger stress
its tendon undergoes), (v) the type of activities performed,
and (vi) the rate and frequency of loading [331]. These prop-
erties, allow to describe the tendon behavior using a differ-
ential equation that relates tendon stiffness and strain rate.

4.2 MTU Computational Models

Muscle activity helps to understand how forces are generated
during a particular movement. The direct measurement of
muscle forces requires the use of invasive methodologies,
since subjects must undergo a surgical procedure for the
implantation of transducers [332], which limits and makes
this approach often impractical [333]. Thus, surface electro-
myography appears as a non-invasive alternative to meas-
ure muscle activity, which has some inherent shortcomings,
since it does not quantify the muscle force and, in some
cases, the crosstalk phenomenon occurs, i.e., the recorded
activity results from the simultaneous contribution of dif-
ferent muscles.

Computational MSK models consist of a non-invasive
solution to these limitations, and they have been used to:
(i) analyze the performance of athletes [334], (ii) study
the function of single muscles [120, 321], (iii) study the
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influence of tendon properties [335], (iv) predict forces in
crash-test studies and, (v) study the movement induced by
a set of muscle forces or activations, just to name a few
examples.

Distinct computational muscle models describing the
mechanical behavior of skeletal [328], smooth [336] and
cardiac [337] muscle are available in the literature. How-
ever, since only skeletal muscle is directly involved in human
movement the models that address the modeling of smooth
and cardiac muscle are out of scope of the present work.

Biophysical models are represented by a set of complex
partial differential equations, which allows to describe the
muscle contraction mechanism with accuracy and results in
high computational cost that limits their application within
the framework of MBS formulations [84, 85]. In turn, phe-
nomenological or Hill-based lumped-parameter models
describe the force-producing properties of skeletal muscle
[86] with more simplicity and lower computational cost.
Several mechanical muscle models have been proposed to
study the muscle contraction dynamics [108, 338], namely,
the Maxwell, Voight, Kelvin and the Hill Model [108] (see
Fig. 2).

In the Maxwell, Voight and Kelvin models, the behavior
of the skeletal muscle tissue is described by means of pas-
sive elements, such as spring and damping elements as rep-
resented in Fig. 2. The difference between these models lies
on the different arrangements of those elements. Since these
models are not currently used in the context of human move-
ment analysis, they will not be addressed in detail. For more
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information regarding these models, the interested reader
can consult the work of Yamaguchi [108]. The Hill model
[328] has an additional force generator element to simulate
the tension produced by the contractile proteins, actin and
myosin. The passive and active elements can accurately rep-
resent the contractile properties of the muscle tissue and the
elasticity of the muscle fibers and tendon. Furthermore, in
contrast with the Kelvin model, in which the passive ele-
ments have a linear response, the Hill model typically uses
nonlinear springs to represent both parallel and series spring
elements.

In Hill muscle model, the modeling of the MTU requires
some simplifications, including the assumption that MTU
actuators are extensible, frictionless, and massless strings.
All muscle fibers are assumed to be straight, parallel, of
equal length, and coplanar. Moreover, the cross-sectional
area and height of the fibers are assumed to be constant
and the pennation angle varies in order to maintain muscle
height. The muscle force production is directly related to
the force developed by a single representative fiber and a
function of each muscle activation, length and velocity of
contraction, each of which modulates force production inde-
pendently [339, 340].

Several Hill-type models [328], ranging from simple
[341] to very complex models [42, 87, 342, 343], can be
found in the literature. Figure 3a illustrates a simple Hill-
type model in which only a contractile element is consid-
ered, and the tendon is treated as infinitely stiff and aligned
with the muscle fibers. This model oversimplifies the MTU
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behavior and its ability to produce force. Figure 3b shows
a slightly more complex and more physiologically accurate
MTU model since also takes into account the pennation
angle which changes the amount of force transmitted from
the muscle fibers to the tendon and, consequently, to the
bone. The model presented in Fig. 3c neglects the penna-
tion angle but includes the passive element, which considers
the force—length relationships. Figure 3d illustrates a MTU
model that covers all features of the previous model but also
includes the pennation angle. Finally, Fig. 3e—f depicts a
model in which the tendon is treated as an elastic element,
which provides a response closer to the real function of the
MTU.

Although an elastic tendon model suggests a more realis-
tic behavior [340], according to Millard et al. [339] in cases
where the muscle has a short tendon, the stiff tendon model
attains similar results that those obtained with an elastic ten-
don model. Thus, the stiff model assumption performs well
for those cases where the tendon does not stretch enough
to affect the normalized length of the contractile element
[339]. Regarding the accuracy and efficiency of different
MTU models, considering both rigid (Fig. 5d) and elastic
tendons (Fig. Se), Millard et al. concluded that both models
produced similar MTU forces when the tendon slack length
is lower than the muscle optimal length, but the rigid tendon
model could run simulations from 2 to 54 times faster than
the elastic model [339].

In addition, Pereira et al. [344] presented a muscle model
that allowed to efficiently compute redundant muscle forces
in the presence of muscle fatigue, and Guo et al. [345]
addressed the mass distribution of the skeletal muscle during
motion. Although fatigue and muscle mass wobbling play a
key role in human motor control [344] and MSK dynamics
[346, 347], these topics are not usually considered in most
of the existing MSK models, which leads to non-negligible

(i —

errors. Both models allow to obtain more realistic outputs,
which turns out to be their great advantage.

4.3 MTU Scaling

The musculotendon unit models described in the previous
section require the quantification of a set of parameters,
namely (i) optimal fiber length, (ii) tendon slack length, (iii)
muscle pennation angle, and (iv) maximal isometric force
[87]. Some of these parameters can be directly measured via
ultrasound [348—-350] or MR imaging [92]. However, some
others, such as the optimal muscle length or tendon slack,
are difficult to measure [104].

Several authors consider that the use of generic muscle
model parameters is inappropriate due to the high sensitiv-
ity of MSK models to them [98-101]. The use of subject-
specific parameters of the individual under analysis is the
most appropriate modeling procedure [102] since the param-
eters have great influence on muscle force production [96,
97]. However, the construction of subject-specific models is
an expensive and time-consuming procedure which makes
it usually unfeasible. Therefore, most researchers apply
generic MSK models, based on datasets available in the lit-
erature, which are scaled to the subject under analysis [103].
The most used datasets are those presented by Yamaguchi
[108], Horsman et al. [351] and Carbone et al. [109], in
which the data was collected from a single cadaver, or by
Delp [352], Ward et al. [353], Handsfield et al. [354] and
Rajagopal et al. [209], in which several subjects were used.

According to Winby et al. [104], the optimal mus-
cle fiber length and tendon slack length greatly affect the
capacity of a MTU to generate force. The scale of these
two parameters should be performed using anthropometric
and functional data of the subject of interest. Anthropomet-
ric scaling adjusts MTU lengths and moment arms using
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the anthropometric parameters of the subject under analy-
sis, while functional scaling reflects each subject’s specific
moment-generating characteristics [105, 106].

Regarding anthropometric scaling, different techniques
can be used, namely, linear scaling [355], scaling by main-
taining a constant tendon slack length throughout the range
of joint motion [356], and scaling by maintaining muscle
operating range throughout the range of joint motion [103,
104, 357]. In the first and most used method, a linear anthro-
pometric scaling of the optimal muscle fiber length and
tendon slack length is performed based on subject’s bone
dimensions [355, 358].

The second method was originally proposed by Manal
and Buchanan [359]. Herein, the MTU length was com-
puted at three different postures. Afterwards, the normal-
ized muscle length was adjusted to minimize the difference
between the subsequent tendon slack length computed in
each posture. Since the normalized muscle force can be
estimated through the interpolation of the normalized fiber
length on the force—length curve, the tendon slack length
can be computed based on the muscle’s optimal fiber length,
musculotendon lengths measured and the pennation angle.
This method allows to estimate subject-specific tendon
slack lengths for an individual muscle, rather than estimat-
ing architectural parameters for all muscles within a group.

Finally, in the scaling method that maintains the muscle
operating range throughout the range of joint motion, the
normalized muscle length between the scaled and unscaled
model is preserved for different joint postures. Moreover, the
relation between the normalized maximum force and joint
angle was also preserved since normalized muscle force is
the only determinant of muscle force during a maximum
isometric contraction [104].

In view of the above methods, when performing muscu-
lotendon unit parameters scaling, the most appropriate is the
one that maintains the muscle force-generating characteris-
tics during a maximal contraction [104].

Bujalski et al. [90] grouped MTU parameters according
to their influence on the muscle force output. The param-
eters that present more influence in muscle force production
capacity are the maximum isometric force, the pennation
angle, the optimal fiber length, the tendon slack length, the
tendon reference strain, and the tendon shape factor, respec-
tively. In contrast, the force enhancement during eccentric
contraction, the curvature constant in the force—velocity
curve, the maximum contraction velocity or the shape at
the extremities of the active contractile element exhibit small
impact on the capacity of muscle to produce force.

4.4 MTU Path

The definition of the muscles path is fundamental for the
dynamic analysis of MSK systems, since the muscle length

and its rate of change affect the computation of muscle
forces, moment arms, and the resulting body and joint
loads [113]. The first and simplest muscle path model is the
straight-line model, in which the muscle path is represented
by a straight line between the centroids of both the muscle
origin and insertion [110]. Since the MTU may wrap around
several bones or other tissues, and form curved paths, the
straight-line model is often inadequate. To overcome this
limitation, the centroid-line model [360, 361] represents the
muscle path as a line that passes through the locus of cross
sectional centroids of the muscle [110], which are difficult to
obtain for every joint configuration and make the application
of this model challenging. Methods that consider several via
points (i.e., several points along a muscle path whose posi-
tions are constrained by the presence of another anatomical
structure) along the segment have also been presented [108,
352], but they are only valid for simple hinge joints [110].
For joints with more than one DoF, the muscle can slide over
the anatomical surfaces and lead to an incorrect computation
of muscle lengths and muscle moment arm discontinuities.

Considering these limitations, Garner and Pandy [110]
proposed a new method, designated Obstacle-Set Method, in
which each muscle is modelled as a frictionless elastic rub-
ber band that wraps around anatomic structures. The mus-
cle is considered as a series of straight-line and curved-line
segments that pass through several via points, which may
be fixed or not to bones. This approach defines two types of
via points: fixed via points that remain fixed in a bone refer-
ence frame, and obstacle via points that are not fixed in any
reference frame but are constrained to move on the surface
of an underlying obstacle.

In this approach, straight lines connect adjacent via
points, while curved lines define the muscle path around
the surface of anatomical structures, which are represented
by regular-shaped rigid bodies, including a single-sphere,
a single cylinder, a double cylinder, and a sphere-capped
cylinder [110]. All these methods require the definition of
the radii of geometric elements (spheres and cylinders), the
position and orientation of the fixed reference frame on those
elements and the position of two bounding-fixed via points
with respect to the bone reference frame. An example of the
application of the single sphere obstacle-set is to define the
path of the biceps brachii muscle [110]. The single cylinder
obstacle-set can be used to obtain the path of uniarticular
muscles, while the double cylinder obstacle-set is a suit-
able option to model the path of biarticular muscles and it
differs from two simple cylinders since, in the double cyl-
inder, no bounding fixed via points exist between the two
cylinders [110]. Additionally, the double cylinder obstacle-
set enforces both cylinders not touching each other where
the muscle path interacts with each cylinder. Finally, the
sphere-capped cylinder allows to obtain the muscle path of
long muscles that span joints with more than one DoF [110].
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Although the Obstacle-Set method allows the automatic
generation of muscle wrapping around anatomical struc-
tures, it only considers simple geometries, which is not
always anatomically accurate. Later, Gao et al. [111] pro-
posed an alternative method to generate muscle wrapping
over surfaces with arbitrary shape, while maintaining a high
numerical efficiency. This method can be applied to all mus-
cles and it only requires data regarding muscle origin and
insertion and the geometry of the bones that interact with the
muscle. To simplify the computations, the bones are treated
as a stack of cross sections, and the muscle paths as a set of
connected lines passing through the cross sections where
muscle and bone interaction occurred [111].

More recently, Stavness et al. [112] proposed a method
in which the total muscle path is composed of geodesic
segments wrapping around each surface and joined by
straight-line segments. The proposed algorithm computes
the shortest path across multiple implicit surfaces, which
define the anatomical structures, using an iterative procedure
in which the positions of the origin points of the geodesic
segments are adjusted to ensure the two geodesic segments
on each surface connect collinearly and the adjacent straight-
line segments are tangent to the surface in the connection
points. Although this method is generic and provides accu-
rate results, it is computationally slow [112].

Afterwards, the Natural Geodesic Variation technique has
been proposed to improve the accuracy and computational
efficiency of the calculation of MTU’s shortest path across
an arbitrary number of general smooth wrapping surfaces
[113]. This method uses a single geodesic segment per
surface, therefore, it only considers the constraints for the
shortest path at the transitions between the geodesic and
straight-line segments.

4.5 Muscle Redundancy Problem

Human joints are spanned by a large number of muscles,
which allows to perform a specific movement with different
combinations of muscle actuation without compromising its
goal. According to Bernstein [188], “It is clear that the basic
difficulties for co-ordination consist precisely in the extreme
abundance of degrees of freedom, with which the [nervous]
center is not at first in a position to deal”. This issue is com-
monly known as muscle redundancy and means that there is
not a unique solution for a specific motor task [188].

In case of injury, muscle redundancy allows the subject to
perform a given task by recruiting different sets of muscles,
which is less efficient but provides a temporary alternative
until recovering full functionality. In addition, muscle redun-
dancy also allows for having muscles optimized to perform
different combined movements (e.g. flexion + rotation) or
muscles which, when active, act immediately at the level of
two joints (biarticular muscles).
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From a mathematical perspective, the number of
unknown variables, i.e., musculo-tendon forces, muscle acti-
vation, or neural control surpasses the number of dynamic
equations, equal to the DoFs of the system, which results in
an undetermined problem with an infinite number of pos-
sible solutions. Optimization techniques are often applied
[108] to find the combination of musculo-tendon forces that
minimizes a particular cost function. It should be noted that
musculo-tendon forces, commonly used in the MSK models,
do not distinguish the forces produced by the muscle and the
forces produced by the tendon at the MTUs. The definition
of the cost function is a critical step [37], which, in some
cases, becomes easy when the performance criterion is clear,
as in a vertical jump, in which the goal is to maximize the
vertical displacement of the body’s center of mass during the
flight phase [215]. However, the cost function becomes hard
to define when there is no clear criterion, as in walking. A
wide variety of cost functions with different physiological
criteria can be found in the literature, namely mechanical
energy, dynamic effort, jerk, stability, or maximum abso-
lute joint torque, muscle activations, volume-scaled activa-
tions, forces, stresses, metabolic energy, and joint contact
forces [362]. The most commonly used consider the muscle
stress-endurance relationship to minimize muscle stress,
while maximizing muscle endurance [115, 363], or consider
the muscles’ energy consumption mechanisms, the cross
bridges detachment and the calcium re-uptake, to minimize
the energy expenditure [364]. However, these cost functions
are not suitable for tasks in which the goal is to maximize
its performance [365].

Generally, performance criteria based on principles of
energy minimization, such as the metabolic energy, mechan-
ical energy and dynamic effort, tend to present better results
[37, 366]. However, Ackerman et al. showed that the use of
only energy-related cost functions does not always lead to
natural and realistic movements. While simulating the gait
movement, these authors showed that this type of functions
do not allow to obtain the typical knee flexion pattern that
occurs during the stance phase [37]. To improve the realism
of the simulation, several authors consider the use of track-
ing control approaches, which can be included in the objec-
tive function or as an optimization constraint to minimize
[367]. More recently, several authors addressed the inclu-
sion of joint reaction forces in the cost function to obtain
more physiological musculo-tendon forces and joint contact
forces [41, 362, 368]. Moissenet et al. [41] showed that their
inclusion resulted in contact force patterns similar to those
observed in vivo and in a more physiological loading pattern
during the stance phase. However, the authors also refer that
the tuning of the optimization weights has a strong influence
on the obtained muscle—tendon forces.

The selection of the optimization technique and the defi-
nition of the design variables and constraints [369, 370] is
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a fundamental issue, and static and dynamic optimization
routines are the most used. In static optimization, the optimi-
zation problem is solved independently for each time frame,
the set of muscle forces that balances the joint moments is
found while also satisfying the selected cost function [115,
371, 372]. However, this method only takes into considera-
tion instantaneous criteria, which does not mimic the deci-
sions of the CNS and leads to non-physiological on—off
switching of muscle forces. Despite these limitations, this
approach is very robust and computationally efficient. In
dynamic optimization, the time history of the simulation
along with the muscle contraction and EC coupling dynam-
ics are used to find muscle forces [36], which leads to more
accurate physiological results. Moreover, such optimization
techniques also allow to define time-integral cost functions
or time-dependent functions. The dynamic optimization can
also address questions for which no experimental data exist,
such as, deep muscles forces using non-invasive approaches.

In general terms, dynamic optimization problems can be
stated from three different perspectives: forward dynamics
optimization, inverse dynamics optimization and predictive
dynamics. In forward dynamic problems, the variables to
optimize are the forces, joint torques, muscle forces or mus-
cle excitations. This type of methods has the advantage of
the movement be directly obtained from the integration of
the equations of motion and from the initial state of the sys-
tem. On its turn, these methods tend to be computationally
expensive and require accurate boundary values to stabilize
the system. Inverse dynamic-based problems optimize vari-
ables related with the kinematic of the system (e.g., posi-
tion, angular joint position, among others). This type of
problem does not require the integration of the equations of
motion and accurate boundary values, being consequently
more efficient than the previous methods. However, this
type of analysis requires experimental data and the forces
are not directly obtained from the optimization. Predictive
dynamic problems optimize simultaneously the kinematics
and dynamics of the system. This way, the optimized posi-
tions, torques and forces of the biomechanical system are
obtained directly from the simulation. Predicative methods
present also other computational advantages. Since the equa-
tions of motion are treated as equality constraints, this type
of methods does not require their explicit integration, as well
as no boundary information is needed to achieve the optimal
solution. In contrast, this method leads to large optimization
problems with a large number of design variables, requiring
specific optimization algorithms [373].

Predictive methods can be further divided into semi-
predictive or fully predictive methods [374]. The former
requires tracking the error between the optimization out-
puts and experimental data. For that purpose, the differ-
ences between the simulated and experimental data (e.g.,
the position of a given point/joint at a specific time instant)

are included in the optimization process as a cost function to
minimize. Other approaches consider alternative algorithms,
such as the proportional-integral-derivative control or the
computed torque control to track the experimental data.
Although these methods enable the computation of realistic
joint torques and muscle forces [375], they are limited to the
study of human motion with experimental measurements
and cannot be used when the conditions (environment, goal,
execution speed, amongst others) in which the task is per-
formed change [36]. In contrast, fully predictive methods do
not require experimental data, which make them suitable to
study movements in which the data is missing or to test tasks
with varying conditions [376].

In addition to the methods addressed before, other
approaches can be found on literature. These include varia-
tions to the inverse and forward dynamics methods, mixed
approaches, implicit methods, neural networks, among oth-
ers. The interest reader is referred to the works of Ezati et al.
and Xiang et al. for more information on this topic [36, 373].

From a computational point of view, dynamic optimiza-
tions have a high computational cost, since they require to
simulate the entire movement for each possible solution and
a more detailed MSK model [377]. To address this issue, the
optimization problem, and in particular the predictive meth-
ods, can be stated in terms of an optimal control problem,
which can be solved using indirect or direct methods [378].
To solve an optimal control problem, four key elements are
required: (i) the state equations of the dynamical system,
(ii) the controls that influence the behavior of the system;
(iii) the constraints and (iv) a performance criterion [379].

In the context of biomechanics, direct methods, which
include the direct shooting and direct collocation methods,
tend to be preferable, since they do not require the solution
of a boundary-value problem. Amongst them, the direct col-
location method is the most commonly used, since it avoids
the integration of equations of motion, as these are included
in the optimization as equality constraints that must be ful-
filled. This procedure enables to decrease significantly the
computational costs when compared with direct shooting
methods [380].

However, both forward dynamic and predictive
approaches require the inclusion of models to depict the
interaction between the body and the surrounding environ-
ment (e.g., foot—ground [381-383], leg-orthosis [384-386],
hand-assistive device contact [387-389], among others),
since contact forces play a key role in muscle, ligament, and
joint reaction forces [381]. This interaction can be modeled
using kinematic constraints or a compliant contact model.
In the first approach, unilateral kinematic constraints are
used to model a perfectly inelastic collision without sliding.
Regarding the second approach, the contact geometry must
be defined and a constitutive viscoelastic model is applied
to estimate the contact forces [382, 390].
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In particular, several works have been published to predict
the contact forces between the ground and foot for several
movements [381, 391-395]. Most of these models represent
the foot surface by a set of points [392] or spheres/ellipsoids
[382] and apply simple spring/damper elements. However,
Shourijeh and McPhee [381] indicate that models based on
point contact elements lead to sharp contact forces that do
not depict the experimental data, suggesting the use of volu-
metric models.

4.6 Ligaments

Ligaments are composed of dense fibrous bundles of colla-
genous fibers, primarily type I collagen, protected by dense
irregular connective tissue sheaths. These collagen fibers are
extremely stiff and highly aligned in the direction of force
transfer [396]. In some cases, ligaments form a sac that sur-
rounds the articulating bones and contains a fluid lubricant,
the synovial membrane whereas sometimes fasten around or
across bone ends in bands [396].

From a physiological point of view, ligaments are similar
to tendons and fasciae as they are all made of connective tis-
sue. Ligaments connect a bone to other bone while tendons
connect muscle to bone and fasciae connect muscles to other
muscles. The junction between the soft tissue of ligaments
and the hard tissue of bones varies greatly among differ-
ent ligaments as well as between the two ends of the same
ligament [397]. Ligaments play a very important role in
permitting several degrees of movement, constricting inap-
propriate movement or guiding joint motion and stabilizing
joints even in the absence of muscle and tendon forces [397].
When ligaments no longer ensure joint stability, abnormal
kinematics occurs which may lead to damages in the tissues
in and around the joint, such as wear of the cartilage or oste-
oarthritis. In contrast to muscle, ligaments cannot usually
regenerate naturally. The mechanical properties of ligaments
are related with composition of the collagen fibers and the
proteoglycan-rich matrix that surrounds such fibers. Some
ligaments are richer in collagenous fibers, which produces
more inelastic behavior, whereas others are rich in elastic
fibers, which make them quite tough even though they allow
elastic movement. Due to their histological similarity with
tendons, both tissues have similar mechanical properties.

Likewise tendons, the ligament force—displacement curve
behavior is non-linear when subjected to constant strain rates
[398]. This occurs due to the progressive recruitment of the
collagen fibers during load increases [399].

Moreover, the ligament only responds to traction excita-
tion, therefore, when the ligament length is shorter than the
resting length no force is generated, however, small changes
in ligaments length can cause large passive forces. Liga-
ments also present creep, stress relaxation, and hysteresis.
However, due to differences in the percentage of collagen
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molecules, in the content of elastin and in blood supply
from insertion sites, ligaments present different behavior in
response to loading.

In conclusion, from a mechanical point of view, ligaments
are passive elements that present a viscoelastic behavior, i.e.,
the applied stress results in an instantaneous elastic strain
followed by a viscous time dependent strain. Ligaments
mainly resist to uniaxial loads, however, they also experi-
ence shear and transverse loading in vivo [397]. Moreover,
since, in certain joint configurations, ligaments wrap around
each other or bones, they are also subjected to compressive
contact stresses [397].

4.7 Ligaments Computational Models

Although ligaments play a key role in joint stability they are
not commonly used in the modeling of musculoskeletal bio-
mechanical models for human analysis within the framework
of multibody systems dynamics, since the purpose of these
models is to explain muscle function [213]. However, when
included in MSK models, ligaments are usually described
by several line elements that correspond to different fiber
bundles. Similar to muscles, each ligament requires the defi-
nition of the ligament geometry path. For that purpose, a
point set composed of an origin, insertion and via points
for each ligament is required [400]. The most appropriate
stress—strain curve for each ligament must be defined to
obtain accurate key ligament properties.

Ligaments have been commonly modeled with elastic
nonlinear force-strain relationship [401-404], which means
that the force a ligament exerts on bone is only a function
of its length. The lack of accurate descriptions of the vis-
coelastic properties of the ligaments, lead to the representa-
tion of the ligaments as elastic springs [402], in which the
only variables required are the stiffness and the undeformed
length of the spring. However, some authors opted for mod-
elling the ligaments as rigid links to constraint the motion of
the articulating anatomical structures. (e.g., shoulder [192],
knee [405] and ankle [202]).

More recent models use one-dimensional non-linear
spring-damper elements to represent ligaments, which
require (i) the ligament zero-load length, i.e., the length
when it first becomes tense, (ii) the reference length, i.e., the
length at the reference (typically extension) position and (iii)
the reference strain, i.e., the strain at that reference position.
Despite its low complexity, this model still enables investi-
gators to predict quantities such as joint kinematics [403].

Several studies [401, 402, 406—408] used the force—dis-
placement curve originally presented by Wismans et al.
[402] and Blankevoort et al. [401] to obtain the zero-load
length of the ligament. In some cases, the ligament reference
length and strain value were obtained from previously pub-
lished studies [401, 409, 410]. Although this approach does
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not take subject-specific ligament information into account,
it facilitates the modeling of the ligaments due to the diffi-
culty to find data for the actual zero-load length [409]. Opti-
mization techniques can be utilized to overcome the lack of
the referred data [408, 409]. Bloemker et al. proposed an
alternative approach in which an experimental setup based
on cadaveric specimens is used to measure the passive limits
of the knee joint, calculate the extent of motion for each liga-
ment bundle and apply a correction factor, to determine its
zero-load length [403]. Bersini et al. [404] developed a MBS
dynamic model of the lower limb segments that includes
ligaments based on MRI from a single Caucasian male and
a forward dynamics analysis was performed to obtain the
ligaments parameters.

4.8 Application Cases and Discussion

The first aspect that stands out from the literature is the high
degree of complexity of the most recent MSK models when
compared to the most antique ones. Older models primarily
addressed the modeling of simple MSK systems of the most
relevant anatomical segments, such as the lower limbs [351,
411], the upper limbs [412], or both [413, 414], while more
recently MSK models evolved to represent in high detail
those segments. The works of deZee et al. [232], Christophy
et al. [415], Raabe and Chaudari [229], Kuai et al.[228] and
Bassani et al. [227] concerning the detailed modeling of
the lumbar spine; Ignasiak et al. [226] regarding the thora-
columbar spine; Malaquias et al. [59] and Kim and Kipp
[416] on the foot; Quental et al. [198] and Nikooyan et al.
[412] regarding the shoulder; and Holzbaur et al. [417] and
Ma’tougq et al. [418] with respect to the hand are representa-
tive. Many musculoskeletal models include two specific
segments, the patella, and the talus, to define, respectively,
quadriceps insertions and subtalar joint axis.

The use of generic or subject-specific MSK models is a
relevant topic since in contrast with the first models, nowa-
days highly detailed subject-specific musculoskeletal mod-
els can be implemented. The MSK models were developed
based on scaling the muscular parameters obtained from
cadaveric specimens [91, 212, 351], which does not consider
the inter-individual variability, such as, muscle origin and
insertion sites. This issue influence the prediction of muscle
force and moment arm, which limits its use for pre-surgical
or rehabilitation assessments [101]. Hence, subject-specific
models should be used instead, as reported by Martelli
et al. [419] and Nejad et al.[420] when comparing the joint
contact forces in the hip and knee obtained with generic or
subject-specific models.

Traditionally, the implementation of subject-specific
models is very time-consuming since the segmentation of
the anatomical structures was performed manually, however,

developments in medical image processing and visualization
have reduced considerably the overall processing time [421].

Thus, a suitable solution to obtain subject-specific models
is to register or morph (geometric interpolation technique
that is often used to transform one form into another) the
medical images of the subject of interest based on previous
studies containing muscle—tendon attachment sites and lines-
of-action [422], or muscle volumes [422]. For that purpose,
statistical shape models (SSM) are a powerful tool to accu-
rately parametrize complex geometries, such as the one pro-
vided by an individual's morphology [320]. Consequently,
SSM provide a solution to obtain a realistic and personalized
description of any subject by combining conventional mul-
tivariate statistics and dense sets of homologous landmarks
used to depict the underlying structures [423]. The work of
Salhi et al. [424] concerning the prediction of subject-spe-
cific muscle origin/insertion regions for the shoulder joint
and for the lower limb is a demonstrative example of this
approach. Nolte et al. [319] used SSM to provide subject-
specific bone shapes from surface digitized experimental
data.

The SK morphing is very important since the dimension
and shape of the model segments have a great impact on
force and moment predictions of MSK models. The need of
medical images of the subject under analysis, in particular
MR images, limits the generalization of SSM.

Another approach that enables the adjustment of the MSK
models parameters is based on the comparison between
the measured and the estimated kinetic data [425], which,
sometimes, present incongruities as a result of inaccurate
modelling assumptions (e.g., rigid body), problems with
the estimation of segment inertial properties and measure-
ment errors (e.g., soft tissue artifact) [426, 427]. A common
approach used to solve this problem is the RRA method
[149, 150]. This reduces or eliminates the residual forces
and torques estimated by the biomechanical model, which
do not actually exist, to comply with the prescribed kinemat-
ics and kinetics [375, 428—430]. Usually, these differences
are reduced by adjusting the BSIPs of the subject or the
kinematics of the movement [431, 432]. Recently, Sturdy
et al. [433] proposed a multi-heuristic optimization method
to automatically tune the RRA parameters, improving simul-
taneously the accuracy of the algorithm.

The development and validation of accurate joint models
is also relevant for MSK modeling, and most of the studies
that estimate muscle and joint forces uses generic joint mod-
els [434]. However, the anatomical differences between sub-
jects lead to distinct joint center or axes of rotation, which
results in different muscle and joint contact forces that the
generic models are not able to reproduce [434, 435]. To
address this issue, numerous studies developed subject-spe-
cific joint models based on MRI and CT that include detailed
representations of the anatomical structures of the joint, such
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as: (i) the hip [102, 436-438], (ii) the knee [74, 439-442];
(iii) the ankle [443, 444]; or (iv) the elbow [445, 446].

Musculoskeletal models have been applied in healthy and
pathological populations [74, 414, 436] performing distinct
movements, such as running at different speeds [414], over-
ground jogging [229], level walking [420], squatting [436]
and deep squatting [420], or jumping [447]. Furthermore,
the use of these models has not been restricted to a specific
technology, since examples of studies using optical motion
capture systems [198, 227, 392, 419], inertial motion units
and depth sensors [316, 317] can be found.

An important finding is that the use of MSK models is not
restricted to researchers able to develop their own computa-
tional routines, since commercial and open-source software
such as, the AnyBody (AnyBody Technology, Denmark),
the Visual3D (C-Motion, Germantown, MD), the SIMM
(MotionAnalysis, SantaRosa, USA) or the OpenSim [358]
software is available.

Table 4 contains several examples of MSK models,
including planar or spatial, generic and subject-specific
models depicting different anatomical segments. Further-
more, for each model, the name, author, year of publica-
tion, anatomical segments, and software or programming
language used in its development are presented.

A final remark worth referring is that although most of
the MSK models included in this work are spatial, recently
Dumas et al. [43] and Millard et al. [39] proposed full body
planar MSK models. Despite their simplicity and limita-
tions, these models provide reliable results under some con-
ditions and are a valuable tool to demonstrate the differences
between inter-segmental and contact forces [43].

In summary, MSK models are an important tool to esti-
mate individual muscle forces and their contribution to joint
moments. They started by considering generic models and
progressively evolved to subject-specific models. Simulta-
neously, the level of detail of the representation of the ana-
tomical structures, such as joints and muscles increased over
time, which led to a more accurate representation of physi-
ological, and anatomical characteristics of an individual.
Furthermore, since different technologies and software can
be used to obtain the necessary data for MSK models, their
use is not restricted to laboratorial environments or limited
by financial issues. The main drawback of MSK is neglect-
ing the dynamics of muscle EC coupling, including only the
muscle contraction dynamics. To overcome this drawback,
NMSK models are a suitable option.

5 Neuromusculoskeletal Models
Neuromusculoskeletal models are representations of an

individual’s skeletal, muscular, and neural system since
they not only include bones, tendons, joints and muscles
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[429] often represented as Hill-type actuators [356, 449],
but also the muscle EC coupling dynamics. Thus, NMSK
models are composed of different components, such as the
“‘neuro”, the “musculo” and the “skeletal” that depict the
ECC dynamics, the muscle activation dynamics, and the
skeletal dynamics, respectively. Therefore, such models
overcome some of the limitations of MSK models which
make them suitable to identify the relationship between
the neurophysiological and muscle levels [118]. The major
issues associated with them are the modeling of the EC
coupling dynamics which implies a higher computational
effort.

5.1 MTU Excitation Contraction Coupling

Humans can produce adaptive movements by skillfully
manipulating their MSK system within a temporal and spa-
tial structure [450]. This process is regulated by the CNS
that transmits a neural excitation signal to the muscle, which
in turn becomes activated and leads to the production of
muscle force.

The ECC describes the sequence of occurrences that
begins with the propagation of the neural signal from the
nervous system on the muscle’s surface membrane and leads
to the contraction of muscle fibers [451, 452] (see Fig. 4). To
produce muscular contraction, the nervous system sends a
neural signal or action potential propagated through special-
ized cells, the motoneurons, which stimulate the muscle fib-
ers. The set formed by these two elements is called a motor
unit. Then, the muscle fibers become activated and, there-
fore, capable of contracting and producing muscle force. The
lag activation process describes the time period that occurs
between sending a neural signal and the effective muscle
fiber contraction [453].

Motoneurons possess structures at their ends called
axon terminals, which form a neuromuscular junction to
connect the motoneuron to the muscle fiber. A muscle is
stimulated when a neural signal arrives at this junction and
release a neurotransmitter (acetilcoline or ACh, which is
contained within vesicles) into postsynaptic clefts (small
gaps located in between the axon terminals and the muscle
fiber) causing muscle activation. ACh binds to specialized
receptors located at the muscle fiber membrane, which
provokes its local depolarization and rapidly propagates
to the entire muscle. This alteration in membrane polari-
zation origins the release of calcium ions (Ca®*), which
bind to a protein called troponin and take part in muscular
contraction occurring at sarcomere level. This occurrence
acts as a trigger, causing the actin filaments to bind to
myosin filaments (crossbridges), beginning the muscle
contraction by the sliding of the two filaments relative to
each other, according to the sliding filament theory. When
the neural signal ends, the concentration of calcium ions
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Fig.4 Processes occurring from neural signal sending until the pro-
duction of muscle force. When a neural signal arrives to the axons of
a motoneuron, it is propagated to the adjacent muscle fibers, provok-
ing muscle stimulation. This occurrence enables ACh to be released

in the synaptic cleft, provoking muscle activation. When the muscle
is activated, calcium ions are released into the muscle fibers, initiat-
ing muscular contraction, which in turn leads to muscle force produc-
tion

1.5+ |
i
i
i
i
i
) e ‘ -
c i i
S i i
s i i
g 0.5 excitation | i i
co— I 1 ]
g onset ! ! !
S ; :
j i |
0.0 t ! : ' :
i i i i
1< tact >1€ tact e tact >
i i i i
_05 J 1 1 1 1
1.5 1 1 1
i i i
i i i
i i i
1.0 g~ - -----mm==mmmmmm—e—m—e e e
c \ ! :
=] ! ! :
] S : ! | |
g 0.5 | excitation ! ! '
'8 : cease ! ' !
© ! i |
o] i i |
° 0.0 | | :
’ to | i i t
}<— taeact - tgeact 1
! 1 !
—-0.5- i i i

Fig.5 Representation of the skeletal muscle excitation contraction coupling dynamics

within the muscle fibers is reduced, inhibiting the cross-
bridges between the two myofilaments and the muscle
relaxes [454, 455].

After the activation, the muscle contracts and produces
force, which depends on two physiological processes. The
muscular force production may be influenced by the fre-
quency of neural signals or stimuli that arrive at muscle fib-
ers or on the recruitment of additional motor units [456].

The muscle EC coupling dynamics, i.e., the relation-
ship between the neural drive and the muscle activation, is
modeled as a first-order process [87]. The following section
addresses the computational modeling of the EC coupling
dynamics.

5.2 Excitation Contraction Coupling Computational
Models

In the last 50 years the knowledge about the ECC coupling
process evolved from how an action potential on the muscle
surface could initiate contraction within only 1-2 ms to a
point in which the major proteins involved in EC coupling
were identified, and experiments to define the molecular
interactions between the proteins were conducted [457].

Some models of EC coupling distinguish the number of
motor units recruited and their firing frequency [343], but,
within the framework of MBS dynamics, the more com-
monly modeling approach assumes that the EC model rep-
resents the net effect of both motor neuron recruitment and
firing frequency. These EC coupling models include the ones
presented by Zajac [87], Winters [458] or Thelen [459],
among others [460].
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A first-order nonlinear differential equation is used to
describe this process [87, 458, 459, 461] which introduces
a delay between the neural excitation (i.e., the firing of motor
units) and the active state of the muscle (i.e., the concentra-
tion of calcium ions within the muscle) [462]. This delay is
fundamental to avoid the physiological inaccurate instan-
taneous MTU activation or relaxation that occurs when
the EC coupling modeling is disregarded [463, 464]. The
use of a first-order model to represent the activation and
deactivation dynamics is a suitable option to model the net
result of the EC coupling, however, it is not able to model
the underlying complex molecular dynamics [462]. These
models relate the activation and deactivation dynamics with
two time constants. The activation time constant refers to the
delay between the onset of excitation and maximum twitch
force, while the deactivation time constant refers to the delay
between the neural excitation finish and the decrease in the
muscle force production [462]. Several studies provide ref-
erence values for these time constants [87, 458, 459, 465].

The inclusion of such features in the EC coupling mod-
els allows that the mechanical activation follows the excita-
tion asymptotically and is bounded between 0 (muscle fully
relaxed/no excitation) and 1 (muscle fully activated/full exci-
tation). Furthermore, it also guarantees that the muscle force
rises faster during excitation than it decays during relaxation,
as illustrated in Fig. 5, which is in accordance with experi-
mental evidence [466, 467] and it is explained by the slower
rate of calcium diffusion out of the muscle fibers.

Despite their good accuracy, the first-order EC coupling
models usually present some drawbacks, namely, the use of
similar activation and deactivation time constants through-
out the movement trajectory.

From a physiologically perspective, this assumption is
inaccurate since it has been shown that these constants are
complex functions of muscle fiber length, velocity, and stim-
ulation frequency [462]. The use of similar activation and
deactivation time constants for muscles with different fiber
composition also undermines the physiological resemblance
of these models. These constants should be adjusted accord-
ing to the selected muscles to increase the accuracy of the
EC coupling modeling [468].

5.3 Application Cases and Discussion

This literature review identified a significant body of litera-
ture on NMSK modeling, with the first works dating back
to the beginning of the 2000s [106, 356, 469, 470]. NMSK
models with distinct degrees of complexity were developed
almost simultaneously, which contrasts with SK and MSK
models since their earlier works started by modeling the
major anatomical structures and progressively evolved to
more complex models. The full body model by Hase et al.
[469], the knee model by Lloyd and Besier [106], the
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shoulder and elbow model by Buchanan et al. [356], or the
elbow model by Koo and Mak [468] are representative of
such works.

Table 6 contains several examples of planar or spatial
NMSK models, depicting different anatomical segments.
Additionally, the approach used to solve the problem is also
presented.

Despite their complexity, NMSK have been used in differ-
ent populations for distinct purposes, namely test the effect
of an elbow joint replacement on the NMSK system prior
to a surgery [471]; design of lower-limb prosthesis systems
[472, 473]; simulate functional tests used in impaired popu-
lations [474]; estimate joint moments across a wide range of
tasks and contractile conditions [106]; predict normal joint
kinematics during single limb support phase of gait [475];
quantify the risk of falling [476], estimate muscle forces [75,
470, 477]; estimate physiologically plausible joint contact
forces [107, 478]; or perform predictive gait simulations
[479].

The most common NMSK models in the literature are
based on the use of EMG data or explore control and opti-
mization algorithms to obtain the optimal solutions. EMG-
driven methods can predict physiological muscle forces over
a wide range of motor tasks and for different populations
with varying age and pathology [485-488]. They also pro-
vide a strong correlation with the subject’s motion inten-
tion. Due to its advantages, EMG has been used by several
research groups to obtain dynamic outputs for either isomet-
ric or dynamic tasks at different anatomical locations such as
the elbow [471, 489], shoulder [55], knee [106], ankle [490],
jaw [491], wrist [360] and lower limb [492].

Besides requiring experimental data, EMG-driven meth-
ods can present some drawbacks related with experimental
and computational conditions that can influence the accu-
racy of its outcomes, namely: (i) difficulties to incorporate
deep muscles for which EMG measurements cannot be
made; (ii) muscle cross-talking; (iii) dependence on the
quality of EMG signals, which is strongly affected by the
sensors placement, the skin condition, the environment and
the electric and magnetic noise; (iv) inaccurate prediction
of the moments around multiple DoFs; (v) difficulties to
attain the true EMG-maxima, since EMG-linear envelopes
are normalized to peak values to reflect percentage excita-
tion levels; and (vi) signal alteration due to preprocessing
procedures such as the choice of filter type and cut-off fre-
quencies [478].

Optimization- and control-based methods are also uti-
lized to track experimental joint dynamics or to infer mus-
cle excitations of NMSK models [465, 480, 493]. When
used to track experimental data, these methods tend to
provide results similar to those obtained using EMG [375,
494]. However, several authors have shown that, for the
same joint angles and moments, different individuals use
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different excitation patterns depending on the control tasks
[495-497], pathology [498-500], and training [501, 502].

When used to infer muscle excitations, this approach
assumes that human motion is ruled by a set of different
performance criteria [503, 504] that may vary according to
the task goal. Mathematically, these criteria, which include
metrics related with joint kinematics and dynamics, energy,
ground-reaction-forces, performance, among other types,
are expressed in the form of an objective function that is
minimized during the optimization problem, as discussed on
Sect. 4.5. An important aspect of the definition of the objec-
tive function is its influence on the simulation outcomes,
being still an open topic [37, 373, 505].

Numerous optimization techniques have been used within
the context of human movement [36]. However, the optimal
control formulations stand out, since they not only allow to
simulate human motion satisfying all the different equal-
ity and inequality constraints imposed on both the system
and the motion task, but also to solve the muscle redun-
dancy problem [506]. Optimal control methods have been
used for a long time [215, 507, 508]. However, their solu-
tion is highly dependent on the algorithm used [507]. More
recently, the direct shooting and the direct collocation meth-
ods have been successfully used to perform human motion
simulation [509]. The direct shooting method requires the
parametrization of the muscle excitations that minimize the
selected cost function, and the problem is solved sequen-
tially, i.e., the cost function is evaluated in each time frame,
which leads to a very high computational cost. Therefore,
some studies only address simple problems or use simple
control parameterizations that lead to a non-optimal solution
to the system of equations [507]. In turn, the direct colloca-
tion method solves all time frames simultaneously. Although
this approach leads to a non-linear programming problem
with a high number of optimization variables (controls and
states), the system becomes sparse and more computation-
ally efficient than direct shooting methods. Thus, direct
collocation method has been applied to simulate different
human movements such as, gait [509], running [510], jump
[380] or Olympic track cycling standing start [511], amongst
other movements.

A suitable solution to handle with the limitations pre-
viously reported to the use EMG-driven and optimization
methods are the EMG-informed methods. These combine
experimental EMG-driven models and optimization tools
to adjust the acquired EMGs and predict the activation pat-
terns of muscles to which no experimental data exists. This
approach allows for the computation of the optimal muscle
excitations and muscle dynamics that minimize the joint
moment tracking errors, while simultaneously calibrate the
muscle parameters to the subject and movement in analysis
[107, 368, 478, 512]. Furthermore, EMG-informed mod-
els also increase the accuracy of subject-specific model

parameters and accurate neural commands [513] and allow
for the study of co-activation patterns [368, 514].

From a computational point of view, NMSK models are
very complex when compared to SK and MSK models,
which limits their widely application. Despite their complex-
ity, neuromusculoskeletal computational models play a key
role to improve the knowledge on how the human nervous
system controls the movement of the limbs during different
activities in both unimpaired and impaired subjects. Moreo-
ver, their outcomes are fundamental to explain the relations
between muscle activity and the kinematics and dynamics of
human movement. Additionally, NMSK are also very impor-
tant to develop solutions that allow impaired people to regain
motor function in cases of disability.

6 Conclusion

The human movement requires highly coordinated actions
from the neuromusculoskeletal system, and the study
of those mechanisms is a challenging topic addressed by
numerous researchers. Multibody system dynamics presents
an accurate and non-invasive approach to study such mecha-
nisms. This approach is based on the use of biomechani-
cal models, which are mathematical representations of the
human SK, MSK or NMSK systems.

Neuromusculoskeletal models are the state of the art in
what concerns the biomechanical models, since they provide
detailed information about an individual’s skeletal, muscu-
lar, and neural systems. However, these models present a
high computational cost or require some parameters difficult
to obtain, which limits its wide use. On the other hand, MSK
models are a suitable solution to obtain accurate kinematic
and dynamic outcomes of human motion, as well as muscle
forces, with a lower level of complexity. MSK and NMSK
models present the muscle redundancy problem, which
requires the use of optimization-based methods. Finally, SK
models are the least complex models, since their outcomes
only consist of kinematics and joint moments.

To ensure an appropriate accuracy of biomechanical mod-
els’ outcomes, several issues must be addressed during the
modeling process. In SK models, the selection of the type
of body (rigid or flexible) that depict the human segments
and corresponding inertial parameters, and the choice of the
most accurate joint models and respective axis or center of
rotation are the most important issues. In addition to those
topics, MSK also requires the MTU modeling, scaling and
path definition. Finally, NMSK models also include the neu-
ral inputs through the ECC dynamics of the MTU.

In addition, most of the biomechanical model parameter,
such as BSIPs, joint centers, segment reference frames, mus-
culotendon and EC coupling parameters, contact models,
amongst others, can be tuned using experimental data or by
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applying other methods based on geometric relations, opti-
mization, Kalman filtering or optimal control. Therefore, the
modelling and analysis procedures are not necessarily inde-
pendent. The coupling of these two steps enables to obtain
more customized models, which better depict the subject in
analysis leading to more accurate predictions.

To conclude, the modeling of biomechanical systems for
human movement analysis has remarkably evolved during
the last decades which allowed to progress from quite sim-
ple to very complex models that provide very accurate and
realistic representations of the human body. These advances
were fundamental to optimize motor performance, treat
movement disorders, or to restore motor function in cases
of disability. Despite these improvements, the combination
of technological progress and human desire for knowledge
keeps this field with great interest, namely in the develop-
ment of complex subject-specific biomechanical models
and its application to daily life activities or to simulate
human motion using tracking data obtained using innova-
tive approaches such as machine learning techniques.
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