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Abstract
The rising importance of movement analysis led to the development of more complex biomechanical models to describe in 
detail the human motion patterns. The models scaled from simplistic two-dimensional to three-dimensional representations 
of body including detailed joint, muscle, tendon, and ligament models. Different computational methodologies have been 
proposed to extend traditional kinematic and dynamic analysis to include not only the evaluation of muscle forces but also 
the action of the central nervous system. Hence, a large number of models varying in complexity and target application are 
available in literature. This narrative review aims to provide an overview of the modeling of biomechanical systems used for 
the analysis of human movement within the framework of multibody dynamics, for those enrolled in engineering, clinical, 
rehabilitation and sports applications. The review includes detailed and generic models, as well as the main methodologies 
applied to model muscle activation and contraction dynamics. Numerous skeletal, musculoskeletal and neuromusculoskeletal 
models with variable degrees of complexity, accuracy and computational efficiency were identified. An important remark 
is that the most suitable model depends on the study objectives, detail level of the depicted anatomical structures, target 
population or performed motion. Summarizing, biomechanical systems have evolved remarkably during the last decades. 
Such advances allowed to gain a deep knowledge on how the human nervous system controls the movement during different 
activities, which has been used not only to optimize motor performance but also to develop solutions that allow impaired 
people to regain motor function in cases of disability, among other applications.

1 Introduction

The study of the human movement has been an object of 
interest since classical Antiquity. However, the first quantita-
tive studies regarding human locomotion only appeared in 
the 1880s with the pioneer works of Marey et al. [1]. They 
allowed to progressively change the study of human motion 
from a qualitative to a quantitative science.

Nowadays, detailed analyses of the mechanics of the 
human neuromuscular system can be easily performed in 
a non-invasive approach using biomechanical models with 
variable degrees of complexity. These models are mathe-
matical representations of a given biological system and can 
be established with different numerical approaches, such as 
multibody systems (MBS) methodologies [2–5] or the finite 
elements method (FEM) [6–8].

Multibody dynamics methodologies are numerical meth-
ods used to model and analyze multibody systems in a sys-
tematic and efficient way. To that purpose, these methods 
require the definition of a set of parameters that completely 
define the topology of the model under analysis. Such 
parameters, commonly referred as generalized coordinates, 
can be obtained using different multibody formulations 
[9–12]. These formulations enable the inverse and forward 
dynamic analysis of large and complex systems [13], such as 
full body biomechanical models containing several muscular 
actuators and a high number of degrees of freedom (DoF), 
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which is fundamental when studying the dynamics of human 
movement.

In the beginning, multibody dynamics was used in simple 
systems composed of rigid bodies and ideal joints. However, 
due to the numerous advances in these numerical methods, 
nowadays they provide an efficient and accurate solution to 
analyze and simulate the behavior of very complex systems, 
with a high number of degrees of freedom or linearly and 
nonlinearly elastic multibody systems with non-ideal joints 
[14]. Moreover, such efficiency allows the use of multibody 
dynamics even in real-time applications [15, 16].

The FEM is a computational technique that enables the 
spatial and temporal discretization of continuum models into 
a finite number of non-overlapping elements [17]. Such ele-
ments, have a simple geometry and are usually designated as 
finite elements or elements. This method allows to replace 
the differential equations that govern complex dynamic sys-
tems with algebraic equations for each element [18, 19]. 
Since the model is composed by many elements, the number 
of algebraic equations that describe the model becomes very 
large. Moreover, this method is time consuming and requires 
a high level of information on the system, such as, the type 
and number of the elements of the mesh (a set of points and 
cells connected to form a network), and the materials proper-
ties (density, young’s modulus, Poisson ratio) [20].

The FEM provides the system’s state of stress and defor-
mation (local effects), producing more accurate results and 
allowing more versatile investigations than the MBS meth-
odologies. Hence, FE models are applied in cases in which 
localized structural deformations or soft tissues need to be 
described and analyzed in detail such in the study of bone 
remodeling [21, 22], to address the performance of joint 
implants [6, 23], to perform articular cartilage tissue engi-
neering [24], or to estimate muscle forces [25]. Although 
widely used in the field of biomechanics, FEM are out of 
the scope of this work. Consequently, only biomechanical 
models develop or used within the framework of multibody 
system dynamics will be included.

Due to their simplifying premises, MBS methodologies 
allow the study of forces and/or displacements at a lower 
number of body points (global effects) when compared with 
a typical FE mesh. Within the scope of biomechanics, multi-
body dynamics are widely applied in areas such as, sports, 
clinical, rehabilitation or ergonomics to enhance human 
performance [26, 27], to improve prosthesis design [28], to 
identify asymmetries between limbs after injuries [26] or to 
characterize the loads associated with repetitive movements 
[29]. Despite these differences, both methods have been suc-
cessfully applied in injury prevention [30, 31], equipment 
design improvement [32] or movement techniques’ optimi-
zation [33–35].

According to Ezati et al. [36], biomechanical models can 
be classified into skeletal (SK), musculoskeletal (MSK) or 

neuromusculoskeletal (NMSK) models. This distinction is 
based on the number and type of anatomical structures con-
stituting each model. For each of these three classifications, 
there are numerous examples of planar [37–39] and spatial 
models [40–42]. Planar models represent a restricted num-
ber of DoF of the system and only allow a simple motion 
analysis limited to the frontal and, more commonly, sagittal 
planes. These models are typically less complex and require 
less data to be implemented when compared with spatial 
biomechanical models, which makes them a suitable solu-
tion to use in motion simulation or in the educational context 
[39, 43].

On the other hand, three-dimensional modeling allows for 
a more realistic definition of the motion of the anatomical 
segments, as well as the forces produced. The complexity 
and accuracy of those models are usually achieved through 
an increase of the computational burden. There are biome-
chanical models which refer to the full body [44–46], and 
others which target a more detailed anatomical structure, 
including models of the upper body [47–51], lower body 
[52–54], upper limb [55] or single segment models, such as 
the foot [56–59].

Skeletal models are the least complex biomechanical 
models since they only include segments and their inter-
connecting joints. When performing SK modeling under the 
framework of MBS methodologies, the segments are usu-
ally defined as rigid bodies. Thus, the dimensions of each 
segment are kept constant and the relative position of all its 
points does not change during the analysis, which means 
that only the DoFs associated with full body translations and 
rotations are considered. However, in biomechanical models, 
the no-deformation requirement is not completely fulfilled 
during experimental data acquisition since, due to the dis-
placement of the human skin with respect to the bones, the 
relative position of the markers at specific bony landmarks 
varies. This phenomenon, usually referred to as soft tissue 
artifact (STA) or skin motion artifact, can lead to an unreal-
istic motion of the model joints and inconsistencies during 
the dynamic analysis [60].

The STA occurs due to inertial effects of the body seg-
ments (e.g., wobbling of the muscle and skin apparatus in 
relation to the skeletal system), skin deformation and sliding, 
gravity and muscle contraction [61] and is task- and subject-
dependent, which makes standard filtering techniques inef-
fective [62–64]. To address this issue, several methods that 
minimize the errors associated to the experimental acqui-
sition of anatomical points have been proposed, being the 
optimization-based methods the most common approach 
[65]. Despite the several methodologies employed to deal 
with STA, the segments are usually defined as rigid bodies 
in the framework of the modelling of biomechanical system 
using MBS methodologies.
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An important issue that results from the rigid body 
assumption is that this approach does not allow to meas-
ure bone strain, which is fundamental in bone remodeling 
[66]. To overcome this issue, Nazer et al. [66] proposed the 
use of flexible multibody dynamics. Regardless the adopted 
approach (flexible or rigid), model segments represent 
human anatomical segments, therefore it is fundamental that 
their inertial parameters are similar to those measured in 
the human segments to ensure the accuracy of the dynamic 
outputs produced by the biomechanical model [67–70].

The selection of the joints’ topology defines the complex-
ity of the biomechanical model, as well as its total number of 
DoFs. In planar biomechanical models, all kinematic pairs 
are usually modeled as ideal hinge joints [71], although 
other mechanical models have been used [3, 72, 73]. In turn, 
the spatial models can also include joints with out-of-plane 
motion, such as ball and socket, condyloid, gliding, saddle, 
hinge, and pivot joints, which are represented by their equiv-
alent mechanical model, that is, spherical, plane, universal, 
hinge and pivot joint kinematic constraints [74], respec-
tively. Literature review also allowed to identify examples 
of spatial model in which non-ideal joints have been suc-
cessfully used [75]. An important point is that the modelling 
approach will greatly influence the dynamic response of the 
multibody system [76, 77].

Depending on the characteristics of each joint model, dif-
ferent procedures are used to correctly calculate its center or 
axis of rotation [78]. These processes allow to obtain the ori-
entation of the local reference frame of each segment, which 
compromises the accuracy of the results from kinematic and 
kinetic analyses [61, 79].

Despite their simplicity, SK models provide kinematic 
and dynamic outputs of the movement, including segments 
orientation, angular displacements, intersegmental forces 
and/or moments using a non-invasive approach, however, 
the intersegmental loads have no physical meaning because 
SK models disregard muscle forces. These outputs are very 
important to increase the knowledge about how different 
individuals find unique solutions to the demands of a sports 
or exercise task, under the various constraints of that task, 
the environment and their own organism [80].

In contrast to SK models, which only comprise the mod-
eling of the anatomical segments and joints, MSK models 
also include muscles. Muscle contraction plays a funda-
mental role in joint motion. Initially, the muscle receives 
an electric signal from the nervous system that will result in 
an action potential and produce a fiber muscle contraction. 
The force produced during muscle contraction is transmit-
ted to the bones through tendons which will produce joint 
motion [81, 82] The functional unit that produces joint 
motion consists of the muscle fibers (muscle without its 
tendinous attachments) and its respective tendon, that is, 
the muscle–tendon unit (MTU) [81].

Consequently, MSK modeling involves selecting the most 
appropriate muscle model and the most accurate method 
for muscle parameters’ scaling, defining each muscle path 
and solving the muscle redundancy problem with a suitable 
optimization technique.

Amongst the developed mathematical models of human 
skeletal muscles, the biophysical and the phenomenological 
models are the most used in the context of biomechanics. 
Biophysical or Huxley muscle models are physiologically 
based and describe the muscle contraction mechanism with 
great accuracy. The force produced by each cross-bridge 
between miosin and actin filaments is calculated and the 
sum of all those contributions provides the total muscle 
force [83]. From a mathematical perspective, a set of com-
plex partial differential equations represents the physics of 
these models, which results in a high computational cost 
and limits their application within the framework of MBS 
formulations [84, 85]. In contrast, phenomenological or Hill 
type models are simplified physical models used to describe 
the force-producing properties of the skeletal muscle when 
subjected to imposed patterns of lengthening and shortening 
[86]. They are widely used in MSK modeling due to their 
simplicity, low computational cost, large experimental data 
set regarding specific model parameters and accurate predic-
tions of muscle force [87–90].

Hill type models require a set of parameters to provide 
force estimations, such as (i) optimal fiber length—length 
at which the maximum active force is generated; (ii) ten-
don slack length—length at which the tendon starts resist-
ing to stretch; (iii) muscle pennation angle—angle meas-
ured between the muscle fibers and tendon; (iv) maximal 
isometric muscle force—estimated with the physiologic 
cross-sectional area (PCSA) [87] or obtained from available 
databases [91] and (v) state of the system—length and con-
traction velocity of the muscle fibers. Some of these param-
eters can be directly measured via ultrasound or magnetic 
resonance imaging (MRI) [92], while others require an indi-
rect estimation from MRI [93], surface electromyography 
(sEMG) [94], and experimental measurements in cadaveric 
specimens [95]. According to Ackland et al. [96] and Xiao 
et al. [97], researchers should use these procedures to obtain 
subject-specific parameters of the individual under analysis. 
The use of generic muscle parameters is inappropriate due 
to the high sensitivity of MSK models’ force production 
to these parameters [98–102]. However, the construction of 
subject-specific models is often impractical, as it can be too 
expensive and extremely time consuming. The most com-
mon approach consists of applying generic MSK models 
based on data available in the literature, and scaling them to 
the subject under analysis [103]. According to Winby et al. 
[104], scaling should be performed using anthropometric 
and functional data of the subject of interest, that is, bone 
dimensions and moment-generating characteristics [105, 
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106], respectively. Moreover, the muscle parameters can 
also be tuned considering the EMG data and optimization 
techniques [107].

Every human muscle connects to the bones by means of 
tendons, spans one or several joints and bypasses several 
anatomical structures. From a computational point of view, 
each muscle is defined as a line that passes through a set of 
points, called via points. These are defined with respect to 
the anatomical segment crossed by the muscle and define 
the muscle path and its line of action. The detailed descrip-
tion of the via points of each human muscle is available on 
anthropometric tables, such as the one presented in Yama-
guchi [108] or Carbone et al. [109]. In particular, the last 
one presents a detailed description of the lower limb muscle 
apparatus.

The accurate definition of the muscle path and line of 
action of each muscle plays a key role on the estimation 
of muscle forces and joint torques. The simplest model to 
address this issue uses a straight line between the muscle 
origin and the insertion to represent the muscle path [110]. 
However, for most muscles, as they may pass through bones 
or other tissues, this model represents an inaccurate mus-
cle path. To overcome this limitation and accurately repre-
sent muscle paths, Garner et al. [110] proposed a method 
in which the muscle path is defined by several via points 
that wrap around anatomical structures. However, in some 
cases this method is not anatomically accurate since not all 
anatomical structures can be represented by such simple 
solids. To address this issue, several approaches such those 
presented by Gao et al. [111], Stavness et al. [112], Scholz 
et al. [113] or Hammer et al. [114] are available.

The number of muscles of the human body largely sur-
passes its number of DoFs [81], which means that, in aver-
age, each DoF is controlled by more than one muscle. This 
muscle redundancy allows the human central nervous system 
(CNS) to have infinite possibilities of muscle actuation to 
perform any motion. In case of injury, muscle redundancy 
allows the subject to still perform a given task by recruiting 
different muscles, which can be less efficient, but it provides 
a temporary alternative until recovering full functionality. 
From a mathematical point of view, muscle redundancy 
means that the number of unknown variables (musculo‐ten-
don forces, muscle activation, or neural control) surpasses 
the number of independent equations of motion (body’s 
DoFs), which results in an indeterminate system with an 
infinite number of possible solutions. To solve this prob-
lem, optimization techniques [108] are applied to find the 
combination of musculo-tendon forces that minimizes a 
particular cost function, which is a mathematical formula 
used to calculate a particular parameter, such as the sum of 
musculo-tendon forces. Although several cost functions have 
been proposed [115, 116], the determination of muscle force 

distribution remains one of the most fundamental problems 
in biomechanics.

Briefly, MSK models estimate the body’s kinematics, 
intersegmental forces, joint moments, and also muscle 
forces. Although they mimic complex MSK systems [117], 
they disregard muscle excitation contraction (EC) coupling 
dynamics, which is also referred as activation contraction 
dynamics, and only deal with the muscle contraction dynam-
ics. This is a significant drawback, since EC dynamics, is the 
process that relates the neural signal that arrives at a motor 
neuron and the muscle activation level. Therefore, MSK 
models neglect the process that inhibits the instantaneous 
activation or relaxation of the muscle, also known as elec-
tromechanical delay, and produce a physiological inaccurate 
instantaneous muscle force [36].

Neuromusculoskeletal models overcome the limitations 
of MSK models since they include a full representation 
of the excitation–contraction coupling (ECC) dynamics 
of the muscle. Briefly, these models comprise three main 
components: (i) “neuro”, which includes the ECC dynam-
ics, (ii) “musculo”, which represents the muscle activation 
dynamics, and (iii) “skeletal”, which relates to the skeletal 
dynamics.

These models not only provide kinematic and joint 
moments outcomes of human movement, but also allow 
to obtain muscle forces and the EC dynamics, which make 
them suitable to identify the relationship between the neuro-
physiological and muscle levels [118]. Consequently, NMSK 
models play a role on: (i) the understanding of impaired 
and unimpaired limbs movements control, (ii) the study of 
the response of impaired muscles to functional electrical 
stimulation, (iii) the design of exoskeletons controlled by 
myoelectric activity; (iv) the comprehension of the physical 
mechanisms of muscle contraction in the analysis of neuro-
muscular control [119–122].

The major issue associated with NMSK models is the 
modeling of the EC coupling dynamics. The EC dynamics 
encompasses the process by which the electric neural control 
signal is converted into the activation signal input of the 
muscle–tendon model, and it is modeled by a first order dif-
ferential equation [87]. Since this system is time dependent 
NMSK models require the use of dynamic or windowing 
optimization techniques with a high computational cost.

Shortly, SK, MSK or NMSK modeling requires a deep 
understanding of numerous topics and it lacks in the litera-
ture a single work describing and reviewing them in detail. 
The main goal of the present study is to provide an over-
view of the most relevant topics related to the modeling of 
the components of SK, MSK and NMSK systems within 
the framework of MBS formulation [2] for those, not only 
with an engineering background, but also for those enrolled 
in the fields of clinical, rehabilitation, or sports sciences. 
Application cases of each model type and its main features 
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are also under the scope of this work. To that purpose, the 
methodology of narrative reviews will be used.

The remaining of this paper is organized as follows. In 
Sect. 2, the research methods used to obtain the records that 
supports the main findings of this manuscript are presented. 
Detailed analysis and discussion of the modeling issues 
related to the main components of SK, MSK or NMSK are 
presented in Sects. 3 to 5, respectively. Finally, the conclud-
ing remarks of this study are provided in Sect. 6.

2  Methods

In the following subsections, an explanation of the method-
ology carried out to choose the studies to be included in this 
review is provided. The definition of the search strategy is 
described, followed by the selection process of the studies. 
This section ends with the results obtained from the applica-
tion of the referred methodology.

2.1  Search Strategy

Published studies were identified using Web of Science, 
SCOPUS and MEDLINE/PUBMED electronic databases, 
since these contain the large majority of works presenting 
or applying biomechanical models in the context of human 
movement analysis. The search was performed by two inde-
pendent researchers, restricted to studies published until 
April 30, 2021, and included the following keywords: skel-
etal models, inertial parameters, joints model, musculoskel-
etal models, muscle models, muscle path, muscle scaling, 
tendon models, EC coupling, biomechanical cost functions, 
neuromusculoskeletal models, which were combined using 
AND/OR/NOT Boolean operators.

2.2  Study Selection

After duplicate removal, the titles and abstracts of relevant 
articles resulting from database search were screened by two 
independent researchers. As inclusion criteria, studies that 
addressed (i) the development and/or use of skeletal, mus-
culoskeletal or neuromusculoskeletal biomechanical mod-
els for the analysis of human movement, (ii) modeling of 
segments, joints, MTU, ligaments and ECC, were selected 
during the screening process.

When the title or abstract did not clearly indicate whether 
an article should be included, then the complete article was 
obtained, and its full text was carefully reviewed. At this 
stage, articles, conference articles or proceedings and books 
that were not written in the English language or that con-
tained models developed within the framework of the Finite 
Element Method (FEM) were excluded. After the application 
of these eligibility criteria, articles, conference proceedings 

and books that included skeletal, musculoskeletal or neuro-
musculoskeletal models of the human body were selected 
for inclusion in the review. Finally, additional references for 
this review were obtained by analyzing the bibliographic 
references of the selected articles.

2.3  Results

A large number of works were initially identified by apply-
ing the methodology presented in the previous subsections. 
Consequently, a word count was not performed during these 
stages. After the removal of duplicated and non-eligible 
works, 388 publications were considered relevant to be 
included in this review. It is important to note that these 
publications, which are compiled on Tables 1, 2, 3, 4, 5 and 
6, were selected according to their historical relevance or 
innovative approach in the area of the development of bio-
mechanical models and movement analysis.

The included models/methodologies were divided into 
three major groups according to the anatomical/physio-
logical structures they represent: (i) Skeletal Models (SK), 
which present the tools to properly define the body segments 
(anthropometry and inertial parameters) and anatomical 
joints; (ii) Musculoskeletal Models (MSK), that explore the 
computational models for depicting the muscle, tendon and 
ligament active and passive behavior; and Neuromusculo-
skeletal Models (NMSK), which describe the muscle activa-
tion dynamics. Additionally, a subdivision was considered 
for the elements that compose these models. For the SK 
models, a sub-division in methods used for segment and 
joint modelling was performed. In a similar way, the MSK 
models were sub-divided into seven sections, addressing the 
modelling of the musculotendon unit (MTU) and ligaments, 
computational models for representation of the MTU and 
ligaments, methodologies for scaling and defining the mus-
cle path and finally strategies for solving the muscle redun-
dancy problem. Finally, the NMSK were sub-divided into 
models for describing the excitation contraction coupling 
and the computational methodologies required for describ-
ing this behavior. A section of application cases presenting 
different models and discussing their major issues is also 
presented at the end of each section.

3  Skeletal Models

The human musculoskeletal system is composed of the skel-
eton, muscles, ligaments, tendons, joints, cartilage, and other 
connective tissues. However, the SK models usually only 
include the representation of the skeleton and the joints.

From a mechanical point of view, the skeleton plays a 
fundamental role in supporting the body and protecting the 
internal organs. Together with the joints and muscles, the 
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skeleton contributes to enable the human motion, since it 
allows to increase the mechanical advantage of the muscu-
loskeletal system (i.e., the ratio of the force that performs 
work to the applied force). On the other hand, the joints 
promote or constrain the relative movements between seg-
ments, which define the number and type of DoFs, as well 
as their admissible range of angular motion.

The modeling approaches of both segments and joints 
affect the accuracy of the kinematic and dynamic outcomes, 
and the most relevant issues associated with it, consist of (i) 
defining the type of segment model and its respective iner-
tial and geometrical parameters, and (ii) selecting the joint 
model and the method to estimate its respective joint axis or 
center of rotation. Having this in mind, in the following sec-
tions these issues are comprehensively addressed/reviewed.

3.1  Segments

Within the framework of MBS methodologies, the bodies to 
be modeled can be treated as rigid or flexible. The flexible 
multibody systems are composed of both rigid and flexible 
bodies [14], and they are commonly used in areas where 
those bodies experience deformations with a magnitude 
comparable to their global space motion such as such flexi-
ble robots, precision machinery, road vehicles and aerospace 
systems [123]. The flexible multibody approach is rarely 
employed in the modeling of biomechanical systems for the 
analysis of human motion since its computational cost is 
very high for dynamic analysis of the entire system [124]. 
In rigid multibody dynamics, all bodies are considered to be 
rigid, which means that the bodies do not bend, stretch, or 
compress. For a detailed explanation of the physics behind 
rigid multibody systems, many textbooks and research 
papers are available [9, 125–129].

Body segment inertial parameters (BSIPs) comprise the 
mass, position of the center of mass, and moments and prod-
ucts of inertia of the segments of the human body. These 
parameters, excluding the products of inertia, are the ones 
with the greatest sensitivity when performing an inverse 
dynamic analysis [70]. The segment’s inertia and position 
of the center of mass are typically obtained from databases 
available in literature and computed as percentages of the 
subject’s body mass and segment’s length, respectively. In 
contrast, other parameters, such as the subjects’ mass and 
height or the segments length, can be directly measured. 
Due to differences between the anthropometric characteris-
tics of the subject under analysis and those used to create the 
generic database it is necessary to adjusts these quantities 
to a specific subject. This procedure, is commonly known 
as scaling,

In the field of biomechanics applied to human motion, 
BSIPs are essential for the study of intersegmental moments, 
angular momentum, mechanical work and whole body Ta
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e 
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dynamic stability [68, 130]. These parameters vary through 
the lifespan of the human subjects due to alterations in the 
size and shape of the body segments. These alterations are 
caused by: (i) rapid changes in growth during infancy, (ii) 
obesity or pathological issues, and (iii) aging conditions in 
old age, such as bone and muscle mass decrease or adipos-
ity increase, among others [131]. Furthermore, BSIPs can 
also change during muscle contraction, due to the changes 
in mass distribution, as reported by Pain and Challis [132].

According to Cizgin et al. [133], BSIPs can be estimated 
with different methods, namely: (i) Statistical models; (ii) 
Geometrical models; (iii) Dynamic parameter estimation 
methods or (iv) Medical imaging-based technologies.

The most used techniques to estimate BSIPs are based 
on statistical models, namely anthropometric tables and the 
regression equations [68], usually based on the subjects’ 
body mass and segment’s lengths of cadaver samples. These 
equations are developed based on samples with different 

sizes and anthropometric characteristics, which, together 
with the differences in tissue composition and morphology 
between the cadaver samples and a given human subject, can 
lead to errors on the parameters estimation [134]. Although 
several authors developed specific equations for particular 
populations, the most used regression equations [135–139] 
are inappropriate to atypical populations as children, elder-
lies, obese, individuals with prostheses, amongst others [68]. 
Despite providing accurate estimations for the segments’ 
mass and center of mass location (within 10% error), the 
regression equations are unreliable in estimating the remain-
ing inertia parameters since, these errors may vary between 
10 and 40% [140–142]. Table 1 presents a list of anthropo-
metric datasets available in literature to estimate BSIPs for 
several populations, such as infants, children, adolescents, 
and adults. Moreover, for each method, the sample gender 
and the respective segments are also presented.

An alternative approach to obtain such parameters is 
using geometric models of the human body [140]. Their 
most relevant advantages are: (i) detailed modeling of the 
shape and density of a segment; (ii) no assumptions on 
segmental symmetry; (iii) accurate modeling of male and 
female subjects with different body morphology, (iv) valid 
for children, pregnant or obese subjects; and (v) adjustable 
densities of specific parts of some segments. Nevertheless, 
direct anthropometric measurements are required to scale 
the model and reduce overall error of the analysis, which is 
their main drawback [140].

To reduce the time spent with these measurements, Clark-
son et al. [143] proposed a method to obtain the body’s vol-
umes based on three dimensional (3D) scanning using four 
depth sensors and random sample consensus optimization 
to identify and exclude outliers in the sample. Peyer et al. 
[144] suggested a low-cost body scanner that reconstructs 
the surface of a 3D object from multiple uncalibrated two 

Table 2  Predictive methods used to estimate the shoulder and hip 
joint centers

Author Year Joint

Andriacchi et al. [244] 1980 Hip
Bell et al. [245] 1989
Davis et al. [237] 1991
Seidel et al. [246] 1995
Shea et al. [247] 1997
Harrington et al. [239] 2007
Hunt et al. [248] 2008
Weinhandl and Connor [249] 2010
Hara et al. [238] 2016
Meskers et al. [240] 1997 Shoulder
Campbell et al. [250] 2009

Table 3  Functional methods to estimate the shoulder and hip joint center

Transformation techniques Sphere fitting

Method Joint Method Joint

Centre Transformation Technique 
(CTT)

[256, 259] Hip & Shoulder Algebraic Sphere Fit Method (ASF) [247, 260, 261] Hip & Shoulder

Holzreiter Approach (HR) [262] Bias Compensated Algebraic Sphere 
Fit Method (bcASF)

[263]

Helical Pivot Technique (HPT) [264] Geometric Sphere Fit method (GSF) [256, 265]
Minimal Amplitude Point (MAP) [266] Incomplete Algebraic Sphere Fit 

Method (iASF)
[263, 267]

Monte Carlo Pivoting (MCP) [268]
Revised Functional Method (RFM) [269]
Symmetric Centre Of Rotation Estima-

tion (SCoRE)
[253]

Schwartz Transformation Technique 
(STT)

[270]
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Table 4  Examples of marker set protocols used for SK modelling

Category Author Year Model name N. Segments Segments N. Markers

Ankle Nair [294] 2010 – 1 Ankle 3
Fullbody Vicon [208] 2002 Plug-In-Gait 15 Head, Thorax, Upper Arm, Forearm, 

Hand, Pelvis, Thigh, Leg, Foot
39

Rabuffetti [44] 2004 – 16 Upper Arm, Forearm, Pelvis, Thigh, 
Shank and Foot

33

Begon [279] 2008 – 14 Upper limbs, Shoulder girdle, Torso-
Head, Pelvis, Thighs, Shank-Foot

16

Guilbert [16] 2019 25 Head, Thorax, Upper Arm, Forearm, 
Hand, Pelvis, Thigh, Leg, Foot, All 
vertebrae

70

LowerBody Kadaba [52] 1990 Helen Hayes 7 Pelvis, Thigh, Shank, Foot 7
Benedetti [295] 1998 – 7 Pelvis, Thigh, Shank, Foot 43
Frigo [278] 1998 – 7 Pelvis, Thigh, Shank, Foot 15
Nadeau [54] 2003 – 8 Foot, Legs, Thighs, Pelvis, Trunk 25
Leardini [280] 2007 – 7 Pelvis, Thigh, Shank, Foot 26
Donati et al. [296] 2008 3 Pelvis, Thigh, Shank 16
Duffell [281] 2014 – 7 Pelvis, Thigh, Shank, Foot 36

LowerBody + TrunkUpperArm Krosshaug [297] 2005 – 21 Head, Neck, Collar, Chest, Upper 
Arm, Forearm, Hand, Abdomen, 
Pelvis, Thigh, Shank, Rearfoot, 
Forefoot

33

Shoulder Jackson [284] 2012 – 4 Thorax, Clavicle, Scapula, Humerus 35
Haering [285] 2014 – 4 Thorax, Clavicle, Scapula, Humerus 45

Spine Hidalgo [230] 2012 – 6 Upper and Lower thoracic spine, 
Total lumbar spine, Shoulder 
segment

9

Thorax Kiernan [283] 2014 Central Remedial 
Clinic Thorax 
Model

1 Thorax 3

Armand [282] 2014 – 1 Thorax 27
Trapezio Metacarpal Cerveri [298] 2008 – 1 Trapezio-Metacarpal Joint 9
UpperBody Schmidt [299] 1999 – 6 Upper Arm, Forearm, Hand 11

Lloyd [300] 2000 – 6 Upper Arm, Forearm, Hand 13
Hingtgen [47] 2006 – 5 Trunk, Upper Arm, Forearm 14
Sybelle [49] 2006 – 9 Thorax, Clavicle, Upper Arm, Fore-

arm, Hand
17

vanAndel [301] 2008 – 8 Thorax, Acromion, Lateral Upper 
Arm, Forearm, Hand

LED

Rettig [48] 2009 – 7 Thorax, Clavicles, Upper-arms, 
Forearms

14

Fohanno [302] 2013 – 5 Thorax, Shoulder, Arm, Forearm, 
Hand

29

Wrist + Hand Metcalf [287] 2008 – 8 Wrist, Metacarpal Arch, Fingers, 
Thumb

26
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– Non available

Table 4  (continued)

Category Author Year Model name N. Segments Segments N. Markers

Multi Segment Foot Models Arampatzis et al. [303] 2000 – 7 Tibia and Fíbula, Talus, Calcaneus, 
Navicular, Cuneiforms, Metatarsals 
I, II and III, Cuboid and Metatarsals 
IV and V, Phalanges I, II and III, 
Phalanges IV and V

18

MacWilliams et al. 
[289]

2003 Kinfoot 9 Hallux, Medial Lateral toes, Medial 
and lateral forefoot, Calcaneus, 
Cuboid, Talus / Navicular / Cunei-
forme, Tibia/Fíbula

19

Hwang et al. [288] 2004 – 10 Hallux, Medial and Lateral toes, 
Medial and Lateral forefoot, Calca-
neus, Cuboid, Talus, Tibia/Fibula

16

Davis et al. [218] 2006 Shriners Hospital 
for Children

3 Shank, Forefoot and Hindfoot 12

Kitaoka et al. [304] 2006 – 3 Shank, Hindfoot, Midfoot, Forefoot 11

Pohl et al. [305] 2006 – 3 Shank, Rearfoot, Forefoot 14

Simon et al. [290] 2006 Heidelberg Foot 
Measurement

10 Tibia, Navicular, Medial Arch, 
Lateral Arch, Hindfoot, Midfoot, 
Forefoot, Hallux, Metatarsal I, 
Metatarsal V

17

Jenkyn and Nicol 
[306]

2007 – 6 Thigh, Shank, Hindfoot, Midfoot, 
Medial forefoot, Lateral forefoot

24

Leardini et al. [53] 2007 Rizzoli Foot Model 
(RFM)

5 Foot overall, Shank, Calcaneus, 
Midfoot, Metatarsus

20

Rao et al. [307] 2007 – 4 Shank, Calcaneus, Forefoot, First 
Metatarsal

12

Cobb et al. [308] 2009 Cobb foot model 4 Shank, Rearfoot, Calcaneonavicular, 
Medial forefoot, First metatar-
sophalangeal complex

33

Sawacha et al. [309] 2009 Padua foot model 4 Shank, Hindfoot, Midfoot, Forefoot 13

Hyslop et al. [310] 2010 – 6 Shank, Single Foot, Rearfoot, 
Midfoot,  1st Metatarsal, Lateral 
Forefoot, Hallux

28

Tulchin et al. [311] 2010 – 3 Shank, Hindfoot, Forefoot 8

Bruening et al. [312] 2012 – 4 Shank, Hindfoot, Forefoot, Hallux, 
Foot

16

De Mits et al. [56] 2012 Ghent foot model 6 Shank, Hindfoot, Midfoot, Medial 
forefoot, Lateral forefoot, Hallux

–

Saraswat et al. [57] 2012 modified SHCG 
(mSHCG)

4 Shank, Hindfoot, Forefoot, Hallux 14

Bishop et al. [313] 2013 – 4 Shank, Heel, Midfoot, Toe box 25

Chard et al. [314] 2013 – 5 Shank, Rearfoot, Forefoot, First 
Metatarsal, Hallux

14

Nester et al. [315] 2014 Salford foot model 6 Shank, Calcaneus, Midfoot, Lateral 
Forefoot, Medial Forefoot, Hallux

20

Seo et al. [58] 2014 – 5 Hallux, Hindfoot, Forefoot, Medial 
forefoot, Lateral forefoot

15

Malaquias et al. [59] 2015 – 5 Shank, Fibula, Rearfoot, Midfoot, 
Toes

17

Oosterwaal, et al. 
[219]

2016 Glasgow–Maastricht 
foot model

26 All feet bones 31
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Table 5  Musculoskeletal models

Model Name Author Year Anatomical Segments Type Model Software

GaitFullBody de Zee et al. [232] 2007 Lumbar Spine 3D Generic AnyBody
Thoraco-Lumbar Spine Ignasiak et al. [226] 2015 Thoraco-Lumbar Spine 3D Generic
GaitFullBody Peng et al. [74] 2017 Full Body 3D Specific
GaitFullBody Skals et al. [392] 2017 Full Body 3D Generic
GaitFullBody Eltoukhy et al. [316] 2017 Full Body 3D Specific
GaitFullBody Bassani et al. [227] 2017 Full Body + Lumbar Spine (L4–L5) 3D Generic
GaitFullBody Kuai et al. [228] 2017 Full Body + Lumbar spine model (L2–L3–L4) 3D Generic
– Malaquias et al. [213] 2016 Foot—Leg 3D Generic Custom

Quental et al. [198] 2016 Upper Limb 3D Generic
– Wesseling et al. [102] 2017 Full Body (Hip Specific) 3D Specific
Lisbon Lower Extremity 

Model (LLEM)
Quental et al. [23] 2019 Lower Body 3D Generic

Ma’touq et al. [418] 2019 Hand 3D Generic
– Millard et al. [39] 2019 Full Body 2D Generic

Dumas et al. [43] 2019 Lower Body 2D Generic
– Holzbaur et al. [417] 2005 Upper Limb + Hand 3D Generic OpenSim
– Hamner et al. [414] 2010 Full Body 3D Generic
– Arnold et al. [212] 2010 Lower Limb 3D Generic
Delf Shoulder Elbow Model Nikooyan et al. [412] 2011 Shoulder + Elbow 3D Specific
– Dorn et al. [413] 2012 Full Body 3D Generic
– Christophy et al. [415] 2012 Full Body + Lumbar Spine 3D Generic
– Martelli et al. [419] 2015 Full Body (Hip Specific) 3D Specific
– Raabe and Chaudari [229] 2016 Full Body + lumbar spine 3D Generic
London Lower Limb Model Moissenet et al. [437] 2017 Lower Limb 3D Generic

Lai et al. [448] 2017 Lower Limb 3D –
– Catelli et al. [436] 2019 Full Body 3D Generic
– Kim and Kipp [416] 2019 Fullbody + Multi segment foot 3D Generic

Table 6  Neuromusculoskeletal 
models

Author Year Category Type Approach

Jonkers et al. [475] 2002 Lower Limbs 3D Forward dynamics
Hase et al. [469] 2002 Fullbody 3D
Buchanan et al. [356] 2004 Shoulder + Elbow 3D
Koo and Mak [468] 2005 Elbow 3D
Seth and Pandy [480] 2007 Trunk + LowerLimb 2D
Doheny et al. [471] 2007 Elbow 3D
Ghafari et al. [481] 2009 Lower Limbs 3D
Kim et al. [473] 2011 Fullbody 3D
Thangal et al. [476] 2013 Fullbody 2D
Wang et al. [474] 2014 Ankle 3D
Buongiorno et al. [482]  2018 Shoulder + Elbow 3D
Rahmati et al. [479] 2018 Fullbody 3D
Allouch et al. [483] 2015 Finger 3D Inverse dynamics
Hoang et al. [368] 2019 Lower Limbs 3D
Quental et al. [75] 2018 Shoulder 3D
Stienen et al. [484] 2007 Spine 3D Neural network
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dimensional (2D) images taken from different positions 
without any assumptions of the body’s geometry. Sheets 
et al. [145] approach uses a laser scanner and an automated 
pose and shape registration algorithm to segment the body 
surface, and identifies the joint center positions to define the 
body’s geometry and volume.

Dynamic parameter estimation methods, also referred to 
as identification techniques, are based on the linear relation 
between the inverse dynamics of a system and the inertial 
properties of its segments [146–150]. This approach requires 
the implementation of a dynamic model of the human body, 
kinematic and kinetic data (e.g., ground reaction forces, 
contact forces on segments, among others) of the move-
ment to analyze, and the application of optimization tools 
to minimize the difference between the computational and 
experimental results for the distal extremity kinetics. This 
approach has been originally applied by Vaughan et al. [150] 
in the analysis of three different planar movements, namely 
running, long jumping and kicking. Fregly et  al. [149] 
extended this method, later referred to as Residual Reduc-
tion Algorithm (RRA), to the 3D analysis of human gait.

More recently, Venture et al. [151] presented a methodol-
ogy to estimate the standard inertial parameters on real-time, 
which produced similar results for the limbs when compared 
with the data from Young et al. anthropometric database 
[152]. However, this methodology leads to physically incor-
rect estimation of some parameters, such as negative seg-
ment’s masses or non-positive definite inertia matrix. To 
address this problem and eliminate the referred physical 
inconsistencies, Jovic et al. [153] used the hierarchical quad-
ratic programming optimization technique [154], which also 
estimates the BSIPs of limbs with different masses. This is a 
significant advantage when compared to methods based on 
anthropometric databases, which assume that left and right 
sides of the human body are fully symmetric [150]. Hansen 
et al. [155] proposed a novel method that presents smaller 
errors in the estimation of the BSIP parameters when com-
pared to the approach proposed by Dumas et al. [69].

Medical imaging technologies include MRI [156–159], 
computed tomography (CT) [160] and gamma-mass scan-
ning [161–163], which allow to obtain accurate measures 
of the internal structures of the human body, such as the 
tissue composition, providing a rigorous estimation of sub-
ject-specific parameters. However, they are time consuming 
and expensive, which limits their application in large-scale 
clinical studies.

In summary, BSIPs are key parameters during the 
dynamic analysis of human motion [68]. An important step 
to obtain accurate BSIPs is the scaling of these parameters 
obtained from generic databases to the subject under analy-
sis. Usually, this procedure is performed based on subject’s 
anthropometric characteristics such as, weight, height, seg-
ments length, and gender.

Although, the BSIPs obtained from regression equations 
are more accurate for healthy older Caucasian males than 
for females, children, or pathological subjects [68], they are 
commonly used for all populations due to their expediency. 
The major problems associated with the computation of the 
BSIP include: (i) the difficulty to obtain subject-specific 
parameters; (ii) the lack of parameters for specific popula-
tions such as child, elderly, obese or pathological; (iii) the 
matching between the segment definition used for the BSIP 
assessment with the biomechanical model construction; and 
(iv) the differences in the estimation of BSIP when using 
wobbling or rigid mass models.

Regarding the estimation of subject-specific BSIPs, 
the approaches addressed before, namely the geometrical, 
dynamic parameter estimation and the medical image-
based methods can be applied. However, Robert et al. [147] 
showed that the estimation of these parameters, when using 
the parameter estimation methods, is very sensitive to the 
quality of the experimental data.

3.2  Joints

Human joints are complex structures composed of several 
tissues, such as cartilage, synovial membrane, ligaments, 
bursas, or synovial fluid, which interact with each other and 
create internal loads that are transmitted to adjacent tissues 
and anatomical structures. Joints play a fundamental role in 
the relative angular movement of the segments since they 
promote or constrain rotation about different DoFs. The 
combination of the DoF of multiple joints leads to a con-
dition, designated DoF problem [188]. From a motor con-
trol perspective, it means that humans can choose between 
different solutions to perform a desired motor task without 
compromising its efficacy.

Despite their complexity, each human joint can be 
approximated by a mechanical model with similar functional 
capabilities. The selection of the appropriate joint model of 
the biomechanical model is of great importance to attain 
valid and reliable kinematic and dynamic outcomes. For this 
purpose, mechanical joint models with variable degrees of 
complexity have been developed, which can be classified 
into ideal or perfect and non-ideal or imperfect joint models.

The ideal models neglect clearance, local deformations, 
polycentric effects, wear, and lubrication effects. Most skel-
etal models present ideal joints, such as: (i) ball and socket 
joint (three DoFs) to model the neck, the hip and shoul-
der joint [189]; (ii) universal joint (two DoFs) to model the 
elbow and the wrist [189]; and (iii) the hinge joint (one DoF) 
to model the knee and ankle joint [190, 191].

These approaches consider that joint rotations are not 
coupled and, therefore, can be modeled as “open-loop” sys-
tems. However, several joints, such as the shoulder [4, 192], 
the elbow and radio-ulnar [193], the knee [194, 195] or the 
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ankle [196, 197] have a complex behavior, which requires 
more sophisticated modeling assumptions. In those cases, 
the joint rotations or the movement of the body segments 
are coupled and “closed-loop” systems should be used [192]. 
Those systems have been successfully implemented both for 
the modelling of lower and the upper limb joints as anatomy-
based constraints (e.g., isometric ligaments, sphere-on-plane 
contacts), which mimic the physiological behavior of the 
joints [192–194, 196–198]. To couple the joint transla-
tions and rotations, planar four-bar-linkage mechanisms 
[199–201], spatial parallel mechanisms [195, 202], 5-rigid-
link parallel mechanism with rigid surface contact and iso-
metric ligaments [203], 6-link parallel mechanism [203], or 
mechanisms incorporating articulating spheres constrained 
by rigid ligaments [204] have been used for both the lower 
and the upper limbs.

On the other hand, imperfect joint models have been used 
when more realistic outcomes of joint internal loads are 
required. These models involve several challenging aspects, 
such as computing the contact-impact forces due to colli-
sions between the bodies or the hydrodynamic forces owing 
to the lubrication effect [205]. One example of this approach 
is the work presented by Quental et al. [198] in which the 
shoulder was modeled as an imperfect joint with clearance. 
More complex and detailed joint models include the subject-
specific joint models in which the geometry of the articulat-
ing surfaces is obtained using MRI or CT images. The elbow 
model developed by Terzini et al. [206], composed of the 
humerus, the ulna, the radius, the ligament complexes and 
the intraosseous membrane, or the knee model developed 
by Dzialo et al. [207], with a moving tibiofemoral axis, are 
representative of such complex models.

The selection of the correct procedure to estimate the 
joint center or axes of rotation is crucial to define the ana-
tomical reference frame of the segments, and it varies sub-
stantially according to the selected joint. If the joint coordi-
nates are incorrectly computed, the results obtained during 
the kinematic and dynamic analyses will be affected due to 
incorrect segment orientations [61, 79]. For the ankle, knee, 
elbow and wrist joints, the most popular approaches are: (i) 
the midpoint between two anatomical landmarks, or (ii) a 
combination of markers and anthropometric measures [208].

More complex knee joint models have been proposed, 
which include the tibio-femoral and patello-femoral joints, 
as the overall knee movement results from the coupled 
motion between these two joints [209, 210]. Rajagopal 
et al. [209] applied the method proposed by Walker et al. 
[211] to couple the tibia rotation and translation with the 
knee flexion angle. Moreover, the kinematic behavior of 
the patello-femoral joint is computed using the knee flexion 
angle and the method proposed by Arnold et al. [212]. On its 
turn, Favier et al. [210] presented a knee model in which the 
patello-femoral joint is modelled as a hinge/revolute joint. 

Other models present mathematical approaches to estimate 
the effective moment arms of the quadriceps muscles taking 
into account the polycentrism of the knee joint and the lever 
and spacer action of the patella. These can predict with more 
accuracy the effective moment arms from the knee instanta-
neous positions, namely the flexion angle, and anthropomet-
ric parameters related to the patella [73].

Regarding the ankle, more complex models, including 
those presented by Rajagopal et al. [209] and Malaquias 
et al. [59, 213], can be found in literature. In both studies, 
the talocrural and subtalar joints are independently modelled 
as a revolute joints, considering the non-intersecting lines-
of-action of the two joints [214]. In particular, to eliminate 
the dynamic issues pointed out by Anderson and Pandy 1999 
[215], namely the increase of the integration time as the 
result of the small mass of the talus segment, Malaquias 
et al. [59] presented an ankle model, in which this segment is 
modelled as a massless link. This way, the kinematic action 
of the talus is modelled resorting only to kinematic con-
straints, avoiding the explicit definition of the segment.

Different foot models, with different complexity levels, 
can be found in literature [216, 217]. They vary from sim-
plistic models, in which the foot is represented only by one 
[5] or two segments [218], to complex representations of the 
foot that considers all foot bones and joints [219].

Many approaches have been used to model the human 
trunk, varying with the objectives of the study. The simpler 
ones consider that the upper body (trunk, upper limbs, neck 
and head) is defined as a single rigid body, usually referred 
to as HAT model (Head–Arms–Trunk) [220–222]. More 
complex models divide the trunk into thorax and abdomen 
[223, 224] or into other specific segments, such as the cervi-
cal [225], thoracic [226], or lumbar spine [210, 227–229]. 
Even more detailed models represent the upper and lower 
thoracic and lumbar spine [230]; the thoracolumbar spine, 
including each individual vertebrae, ribs, and sternum [231]; 
or all the vertebrae [16, 232, 233]. To define the instantane-
ous center of rotation of the lumbar vertebrae, Pearcy and 
Bogduk [234] used the Reuleaux technique [235], while 
Bruno et al. 2015 [231] considered the geometric center 
of the intervertebral disk as the center of rotation of the 
intervertebral joint models. Although these methods enable 
the computation of the intervertebral joints for each pair 
of vertebrae, it is important to note that the spine is largely 
affected by STA, and, therefore, the coordinates of the mark-
ers placed in each vertebrae must be used with caution [210]. 
To overcome this problem, White et al. proposed that the 
movement of specific parts of the spine, such as the lumbar 
spine, could be estimated as a linear function of the overall 
movement of the spine [236].

The shoulder and hip joints require more complex pro-
cedures than just a midpoint between two landmarks since 
the anatomical landmarks do not allow for a direct definition 
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of their center of rotation. To overcome this limitation, 
researchers use regression methods based on anthropomet-
ric measures [237–240]. These methods yield non negligible 
errors due to skin movement artifacts [241, 242]. Additional 
errors may arise from the selection of inaccurate anthropo-
metric predictors for the regression equations [243]. Table 2 
lists several predictive methods used to compute the hip and 
shoulder joint location.

Despite their advantages, they neglect the variability of 
the anatomical structures due to diseases, such as cerebral 
palsy, which leads to musculoskeletal deformities, or matu-
ration, since regression methods are usually developed based 
on healthy people [239]. In this sense, functional methods 
have been used to estimate the hip and shoulder joint centers 
[251], which tend to provide more accurate results than the 
regression methods [78, 251, 252]. Using these methodolo-
gies, geometric or optimization methods are applied to the 
kinematic data (i.e., markers coordinates) of the segment 
of interest during multi-plane movements, collected during 
a short period of time [78]. Sphere fitting approaches and 
transformation techniques are examples of existing proce-
dures within functional methods. In the former, a sphere is 
fitted to a set of identified coordinates belonging to a particu-
lar anatomical segment, while in the latter, a local coordinate 
system is defined for each time frame using the markers on 
each segment. Finally, all local systems are transformed into 
a common reference system that enables the estimation of 
the time-independent joint parameters [253].

Recent studies showed that the duration of the trial used 
to acquire the kinematic data of the segment of interest, the 
range of motion of the segment [78, 254], the subject’s gen-
der [254], the algorithm used to compute the center or axis 
of rotation and the location of the retro-reflective markers 
affect the estimation of the results [255]. Despite their accu-
racy, even in restricted ranges of motion [256], these meth-
odologies may be difficult to apply in pathological subjects 
with neuromuscular deficits [257, 258]. In such cases, Miller 
and Kaufman [257] propose that the regression methods 
should be used instead. Table 3 presents several functional 
methods that may be used to determine the shoulder and hip 
joint centers.

In summary, the methods presented in Tables 2 and 3 ena-
ble the computation of the shoulder and hip joint centers in a 
non-invasive approach. However, according to Sangeux et al. 
[271] and Lempereur et al. [272], the geometric sphere fit 
method and the algorithm proposed by Gamage and Lasenby 
[261] are the most accurate methods to compute the hip and 
shoulder joint center, respectively. The results presented by 
Sangeux et al. [271] are based on the comparison of several 
functional methods with the results obtained when using a 
new imaging system with low dose radiation, designated 
EOS to estimate the hip joint center. In the shoulder joint, 
Lempereur et al. [272] compared the results of different 

algorithms with those obtained when using used a magnetic 
resonance scanner.

To conclude, several studies showed that the functional 
methods are more accurate than the predictive methods to 
compute the shoulder and hip joint centers [252]. How-
ever, the predictive method suggested by the ISB [273] is 
the most accurate to determine the sternoclavicular and the 
acromioclavicular joint center [274], while the regression 
method proposed by Rab et al. [275] should be used for the 
glenohumeral joint [274]. Likewise, Fiorentino et al. [276] 
demonstrated that the combination of predictive techniques 
based on skin markers and dual fluoroscopy leads to more 
accurate results in the estimation of the hip joint center.

3.3  Application Cases and Discussion

There are numerous SK models available in the scientific 
literature. The Conventional Gait Model (CGM) developed 
in the 80s was one of the first biomechanical models used 
to compute 3D joint angles and moments using an inverse 
dynamics approach [277]. At that, another biomechanical 
model, later known as the Helen Hayes model, and very 
similar to the CGM, was presented by Kadaba et al. [52]. 
These two models are a milestone in the history of biome-
chanical models, and precursors for a great number of mod-
els with different degrees of complexity developed since 
then (Table 4).

The first SK models had a limited number of segments, 
since the cameras used could only acquire a reduced number 
of markers per anatomical segment. Thus, only the main 
anatomical segments, such as the pelvis, the thigh, the shank 
and the foot, were represented [52, 278]. Over time, SK 
models became more complex, more anatomical structures 
were represented and modeled with more detail [48, 49, 
208, 279–281]. The thorax models of Hidalgo et al. [230], 
Armand et al. [282] and Kiernan et al. [283], the shoulder 
models of Jackson et al. [284] and Haering et al. [285] or the 
wrist models of Cerveri et al. [286] and Metcalf et al. [287] 
are some illustrative examples of this increased complexity. 
The most representative examples include the multi-segment 
foot models presented by Hwang et al. [288], MacWilliams 
et al. [289], Simon et al. [290], and Oosterwaal et al. [219], 
which divide the foot in 10, 10, 11 and 26 segments, respec-
tively. The technological advancements led to this enhance-
ment in models’ complexity, since more cameras and with 
higher resolution were used, which increased the number of 
retro-reflective markers per segment.

The increasing number of SK models and their lack of 
standardization in the presentation of kinematic data and in 
the definition of local reference frames led to the publica-
tion of two manuscripts, regarding the upper limb and the 
lower limb, by the International Society of Biomechanics to 
create guidelines for modeling and reporting procedures of 
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SK models between results from different research groups 
[273, 291]. These guidelines include the anatomical land-
marks and planes used to define the local reference frames of 
each body segment are presented allowing for a standardiza-
tion of the motion data between the different laboratories or 
research groups. Despite these standards and guidelines, the 
identification of the anatomical landmarks depends strongly 
on the user’s experience, knowledge, and expertise, which 
may lead to significant variations in the kinematic outcomes 
across subjects [292].

When applied to the analysis of human movement, SK 
models require experimental data that describe the motion 
in study. Traditionally, acquisition systems based on markers 
have been used, since these are considered the gold standard 
in the area of motion analysis [293]. The set of markers, 
commonly referred to as marker set protocols, are located at 
relevant points or anatomical landmarks of the body, which 
allow to depict the position and orientation of each model 
segment. The main issue during the selection of a specific 
marker set protocol is the relation between the parameters of 
the biomechanical model and the information provided by 
it. Some methods, such as those used to predict joint cent-
ers or BSIPs, require alternative points of interest that the 
chosen protocol does not consider. Hence, adaptations to the 
original marker set should be implemented or a different one 
should be selected to allow for the acquisition and computa-
tion of the model parameters (e.g., segment lengths, rotation 
axis, reference frames, among others).

Skeletal models have been applied successfully in popula-
tions with distinct characteristics, such as athletes [48, 279], 
healthy [281, 283, 301] and pathological [47, 278], in differ-
ent age groups, namely children, young adults, adults, and 
elderly [46, 48, 230, 278] and for different tasks, including 
walking, running, jumping, functional tasks, among others.

Regarding the motion acquisition systems, although opti-
cal systems based on retro-reflective markers are consid-
ered the gold standard method, other technologies, such as 
inertial motion units, light emitting diodes (LEDs), or depth 
sensors, have been successfully employed [293, 316–318].

Nowadays, researchers can develop subject-specific SK 
models using registration techniques [319], which align two 
or more images of a specific anatomical structure captured 
at different times and multiple view-points. This allows to 
obtain accurate parameters regarding the morphology of the 
subject under analysis [320], which strongly influences force 
and moment predictions. The main limitation is the need of 
medical images, in particular MRI, which increases the cost 
of the analysis.

In summary, SK models have been widely used in popu-
lations with different age, gender, and health conditions. 
Amongst these studies the anatomical segments, usually 
treated as rigid bodies are simplified representations of 
the human body, being the most common the following 

segments: head, thorax, upper arm, forearm, hand, pelvis, 
thigh, leg, and foot.

In turn, the multisegment foot, ankle, shoulder, spine, tho-
rax or trapezio metacarpal models indicated in Table 4 rep-
resent the detailed modeling of a specific anatomical struc-
ture. Several techniques, such as retro-reflective markers, 
clusters of retro-reflective markers, markerless systems, or 
LEDS can be used to obtain the experimental data. Regard-
ing the definition of the joint’s axis or center of rotation 
and the inertial parameters, several approaches are available 
and must be selected according to the characteristics of the 
subject under analysis. Thus, although limited to kinematic 
and some dynamic outcomes, the SK models are crucial in 
musculoskeletal modeling since they provide the bone-fixed 
coordinate systems in which the musculotendon attachment 
points, via points, and obstacles are expressed.

4  Musculoskeletal Models

Musculoskeletal models try to mimic complex MSK sys-
tems composed of bones, muscles, tendons, ligaments, and 
other connective tissues that altogether provide function and 
structure [117]. In contrast to SK models, in which only 
kinematics, intersegmental forces, and joint moments are 
computed [321], MSK models also provide muscle forces 
and activations. For that purpose, MSK models include mus-
cle representations which require the scaling of the model 
parameters, a computational method to compute the mus-
cle paths and an optimization technique to solve the muscle 
redundancy problem. MSK models neglect muscle EC cou-
pling dynamics and only deal with the muscle contraction 
dynamics. Finally, MSK models with ligaments also require 
the computation of the ligament’s paths. A detailed explana-
tion of these topics, their working principles, advantages, 
and limitations is given in the following sections.

4.1  MusculoTendon Unit (MTU)

Muscles are soft tissues composed of fibrous elastic and 
excitable tissue that can contract and extend and play a fun-
damental role in human mobility, stability, posture, respira-
tion, digestion, vision, among others. There are three types 
of muscles in the human body: skeletal muscle, smooth 
muscle, and cardiac muscle. However, the skeletal muscle 
is the only one that can be voluntarily controlled by the 
electrical impulses transmitted by nerves [322]. They are 
attached to the bones by means of tendons, and span one 
or several joints, producing pulling forces that can generate 
movement. The force exerted depends on the type of muscle 
fiber [323], neural control [324], muscle physiological cross-
sectional area [325], muscle fiber arrangement [326], joint 
angle displacement and velocity [326], body size [326], and 
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the force–velocity and force–length relationships [327, 328]. 
Amongst these factors, the ones commonly used in MTU 
computational models are the neural control, the muscle 
cross-sectional area, the muscle fiber arrangement, and the 
force–velocity and force–length relationships. The neural 
control will influence the level of muscle activation which is 
directly related to the muscle maximal force [323]. Accord-
ing to Fukunaga et al. [82] the ability of a muscle to produce 
force is directly related to its physiological cross-sectional 
area and muscle specific tension. The muscle architecture 
(i.e., muscle fiber orientation with respect to the line of 
action of the muscle force, also referred as pennation angle) 
is also an important topic since during muscle contraction, 
the fiber muscle rotates which changes the fraction of force 
directed along the muscle’s line of action.

Figure 1 depicts the relations between normalized muscle 
force (ratio between muscle force and maximal isometric 
muscle force) and normalized fiber length (ratio between 
actual muscle fiber length and muscle fiber length at rest), 
and normalized muscle force and normalized fiber elonga-
tion velocity (ratio between actual muscle shortening veloc-
ity and muscle fiber maximum shortening velocity).

The muscle force vs. fiber length relation includes two 
components, the active and passive force. The active force 
results from the number of cross-bridges between the actin 
and myosin filaments, and it achieves its maximum value 
when the muscle is at rest since there is the largest inter-
action between the actin and myosin filaments [87]. This 
part of the force–length relation plot is the so-called plateau 
region. For higher lengths, the muscle stretches, and the fila-
ments tend to stray, which decreases the opportunities to 
form cross-bridges. In turn, for lower lengths, the muscle 
becomes compressed, which increases the lateral distance 
between filaments and also decreases the number of cross-
bridges. On the other hand, the passive force, caused by the 
elastic elements of the muscle fiber, is null when the muscle 
length is lower than the resting length. For higher lengths, it 
increases exponentially as depicted in Fig. 1a [87].

The rate at which the muscle changes length, for an acti-
vated muscle, also affects the force produced. This relation 
was initially described by Hill [328] and it is illustrated in 
Fig. 1b. The muscle lengthening corresponds to an eccen-
tric contraction in which a higher force is observed, while 
the muscle shortening corresponds to a concentric contrac-
tion in which a lower force is produced. In fact, a maximum 
force level is attained at a given lengthening velocity after 
which the force no longer increases. In addition, any force 
produced during a concentric contraction is lower than that 
produced during an isometric contraction, that is, when the 
rate of change of muscle fiber length is zero. Thus, the force 
production capacity is inversely related to its contraction 
velocity.

Tendons are viscoelastic structures composed of strong 
flexible but inelastic fibrous collagen tissue (60–85%) and 
non-collagenous extracellular matrix components, such as 
cartilage oligomeric matrix protein, elastin, proteoglycans, 
and inorganic components. Tendons withstand tension, 
however, in contrast to muscles, they are unable to contract. 
They connect the muscle to the bone, transmit and modulate 
the forces from muscle contraction to the skeletal system 
to promote movement or provide additional stability [329], 
dissipate energy in abrupt movements and store and transfer 
energy [330].

The mechanical properties of the tendon depend on 
the collagen fiber diameter and orientation [331]. When 
stretched, tendons exhibit a typical "soft tissue" behavior 
with a stress–strain curve consisting of three distinct regions: 
the toe region which starts with a very low stiffness that 
progressively increases; the linear region with constant stiff-
ness; and the yield or failure region in which the tendon 
stretches beyond its physiological limit.

Additionally, tendons hold viscoelastic properties, such 
as creep (increasing deformation under constant load), stress 
relaxation (decreasing tendency for the material to return to 
its original shape when unloaded), and hysteresis (energy 
dissipation during a loading and unloading cycle).

The main factors that affect the mechanical forces on ten-
dons are: (i) the type of muscle force produced (passive or 
active), (ii) the type of movement (flexion–extension, adduc-
tion–adduction), (iii) the level of muscle contraction, (iv) the 
tendon’s relative size (the greater the cross-sectional area of 
a muscle, the higher force it can produce and the larger stress 
its tendon undergoes), (v) the type of activities performed, 
and (vi) the rate and frequency of loading [331]. These prop-
erties, allow to describe the tendon behavior using a differ-
ential equation that relates tendon stiffness and strain rate.

4.2  MTU Computational Models

Muscle activity helps to understand how forces are generated 
during a particular movement. The direct measurement of 
muscle forces requires the use of invasive methodologies, 
since subjects must undergo a surgical procedure for the 
implantation of transducers [332], which limits and makes 
this approach often impractical [333]. Thus, surface electro-
myography appears as a non-invasive alternative to meas-
ure muscle activity, which has some inherent shortcomings, 
since it does not quantify the muscle force and, in some 
cases, the crosstalk phenomenon occurs, i.e., the recorded 
activity results from the simultaneous contribution of dif-
ferent muscles.

Computational MSK models consist of a non-invasive 
solution to these limitations, and they have been used to: 
(i) analyze the performance of athletes [334], (ii) study 
the function of single muscles [120, 321], (iii) study the 
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influence of tendon properties [335], (iv) predict forces in 
crash-test studies and, (v) study the movement induced by 
a set of muscle forces or activations, just to name a few 
examples.

Distinct computational muscle models describing the 
mechanical behavior of skeletal [328], smooth [336] and 
cardiac [337] muscle are available in the literature. How-
ever, since only skeletal muscle is directly involved in human 
movement the models that address the modeling of smooth 
and cardiac muscle are out of scope of the present work.

Biophysical models are represented by a set of complex 
partial differential equations, which allows to describe the 
muscle contraction mechanism with accuracy and results in 
high computational cost that limits their application within 
the framework of MBS formulations [84, 85]. In turn, phe-
nomenological or Hill-based lumped-parameter models 
describe the force-producing properties of skeletal muscle 
[86] with more simplicity and lower computational cost. 
Several mechanical muscle models have been proposed to 
study the muscle contraction dynamics [108, 338], namely, 
the Maxwell, Voight, Kelvin and the Hill Model [108] (see 
Fig. 2).

In the Maxwell, Voight and Kelvin models, the behavior 
of the skeletal muscle tissue is described by means of pas-
sive elements, such as spring and damping elements as rep-
resented in Fig. 2. The difference between these models lies 
on the different arrangements of those elements. Since these 
models are not currently used in the context of human move-
ment analysis, they will not be addressed in detail. For more 

information regarding these models, the interested reader 
can consult the work of Yamaguchi [108]. The Hill model 
[328] has an additional force generator element to simulate 
the tension produced by the contractile proteins, actin and 
myosin. The passive and active elements can accurately rep-
resent the contractile properties of the muscle tissue and the 
elasticity of the muscle fibers and tendon. Furthermore, in 
contrast with the Kelvin model, in which the passive ele-
ments have a linear response, the Hill model typically uses 
nonlinear springs to represent both parallel and series spring 
elements.

In Hill muscle model, the modeling of the MTU requires 
some simplifications, including the assumption that MTU 
actuators are extensible, frictionless, and massless strings. 
All muscle fibers are assumed to be straight, parallel, of 
equal length, and coplanar. Moreover, the cross-sectional 
area and height of the fibers are assumed to be constant 
and the pennation angle varies in order to maintain muscle 
height. The muscle force production is directly related to 
the force developed by a single representative fiber and a 
function of each muscle activation, length and velocity of 
contraction, each of which modulates force production inde-
pendently [339, 340].

Several Hill-type models [328], ranging from simple 
[341] to very complex models [42, 87, 342, 343], can be 
found in the literature. Figure 3a illustrates a simple Hill-
type model in which only a contractile element is consid-
ered, and the tendon is treated as infinitely stiff and aligned 
with the muscle fibers. This model oversimplifies the MTU 

Fig. 1  a Force–length relation plot. b Velocity relation plot
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behavior and its ability to produce force. Figure 3b shows 
a slightly more complex and more physiologically accurate 
MTU model since also takes into account the pennation 
angle which changes the amount of force transmitted from 
the muscle fibers to the tendon and, consequently, to the 
bone. The model presented in Fig. 3c neglects the penna-
tion angle but includes the passive element, which considers 
the force–length relationships. Figure 3d illustrates a MTU 
model that covers all features of the previous model but also 
includes the pennation angle. Finally, Fig. 3e–f depicts a 
model in which the tendon is treated as an elastic element, 
which provides a response closer to the real function of the 
MTU.

Although an elastic tendon model suggests a more realis-
tic behavior [340], according to Millard et al. [339] in cases 
where the muscle has a short tendon, the stiff tendon model 
attains similar results that those obtained with an elastic ten-
don model. Thus, the stiff model assumption performs well 
for those cases where the tendon does not stretch enough 
to affect the normalized length of the contractile element 
[339]. Regarding the accuracy and efficiency of different 
MTU models, considering both rigid (Fig. 5d) and elastic 
tendons (Fig. 5e), Millard et al. concluded that both models 
produced similar MTU forces when the tendon slack length 
is lower than the muscle optimal length, but the rigid tendon 
model could run simulations from 2 to 54 times faster than 
the elastic model [339].

In addition, Pereira et al. [344] presented a muscle model 
that allowed to efficiently compute redundant muscle forces 
in the presence of muscle fatigue, and Guo et al. [345] 
addressed the mass distribution of the skeletal muscle during 
motion. Although fatigue and muscle mass wobbling play a 
key role in human motor control [344] and MSK dynamics 
[346, 347], these topics are not usually considered in most 
of the existing MSK models, which leads to non-negligible 

errors. Both models allow to obtain more realistic outputs, 
which turns out to be their great advantage.

4.3  MTU Scaling

The musculotendon unit models described in the previous 
section require the quantification of a set of parameters, 
namely (i) optimal fiber length, (ii) tendon slack length, (iii) 
muscle pennation angle, and (iv) maximal isometric force 
[87]. Some of these parameters can be directly measured via 
ultrasound [348–350] or MR imaging [92]. However, some 
others, such as the optimal muscle length or tendon slack, 
are difficult to measure [104].

Several authors consider that the use of generic muscle 
model parameters is inappropriate due to the high sensitiv-
ity of MSK models to them [98–101]. The use of subject-
specific parameters of the individual under analysis is the 
most appropriate modeling procedure [102] since the param-
eters have great influence on muscle force production [96, 
97]. However, the construction of subject-specific models is 
an expensive and time-consuming procedure which makes 
it usually unfeasible. Therefore, most researchers apply 
generic MSK models, based on datasets available in the lit-
erature, which are scaled to the subject under analysis [103]. 
The most used datasets are those presented by Yamaguchi 
[108], Horsman et al. [351] and Carbone et al. [109], in 
which the data was collected from a single cadaver, or by 
Delp [352], Ward et al. [353], Handsfield et al. [354] and 
Rajagopal et al. [209], in which several subjects were used.

According to Winby et  al. [104], the optimal mus-
cle fiber length and tendon slack length greatly affect the 
capacity of a MTU to generate force. The scale of these 
two parameters should be performed using anthropometric 
and functional data of the subject of interest. Anthropomet-
ric scaling adjusts MTU lengths and moment arms using 

Fig. 2  Schematic representation 
of muscle models (tendon not 
included). a Maxwell model. b 
Kelvin model. c Voight model. 
d Hill model (CE Contractile 
Element)
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Fig. 3  Representation of MTU models: a Simple model; b Sim-
ple model with pennation angle; c Force–length-velocity; d Force–
length-velocity with pennation; e Force–length-velocity with elastic 
tendon; f Force–length-velocity with elastic tendon and pennation 

angle. (CE contractile element; PE passive element; FT tendon force; 
LMT muscle–tendon length; LT tendon length; LM muscle length; a 
pennation angle)
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the anthropometric parameters of the subject under analy-
sis, while functional scaling reflects each subject’s specific 
moment-generating characteristics [105, 106].

Regarding anthropometric scaling, different techniques 
can be used, namely, linear scaling [355], scaling by main-
taining a constant tendon slack length throughout the range 
of joint motion [356], and scaling by maintaining muscle 
operating range throughout the range of joint motion [103, 
104, 357]. In the first and most used method, a linear anthro-
pometric scaling of the optimal muscle fiber length and 
tendon slack length is performed based on subject’s bone 
dimensions [355, 358].

The second method was originally proposed by Manal 
and Buchanan [359]. Herein, the MTU length was com-
puted at three different postures. Afterwards, the normal-
ized muscle length was adjusted to minimize the difference 
between the subsequent tendon slack length computed in 
each posture. Since the normalized muscle force can be 
estimated through the interpolation of the normalized fiber 
length on the force–length curve, the tendon slack length 
can be computed based on the muscle’s optimal fiber length, 
musculotendon lengths measured and the pennation angle. 
This method allows to estimate subject-specific tendon 
slack lengths for an individual muscle, rather than estimat-
ing architectural parameters for all muscles within a group.

Finally, in the scaling method that maintains the muscle 
operating range throughout the range of joint motion, the 
normalized muscle length between the scaled and unscaled 
model is preserved for different joint postures. Moreover, the 
relation between the normalized maximum force and joint 
angle was also preserved since normalized muscle force is 
the only determinant of muscle force during a maximum 
isometric contraction [104].

In view of the above methods, when performing muscu-
lotendon unit parameters scaling, the most appropriate is the 
one that maintains the muscle force-generating characteris-
tics during a maximal contraction [104].

Bujalski et al. [90] grouped MTU parameters according 
to their influence on the muscle force output. The param-
eters that present more influence in muscle force production 
capacity are the maximum isometric force, the pennation 
angle, the optimal fiber length, the tendon slack length, the 
tendon reference strain, and the tendon shape factor, respec-
tively. In contrast, the force enhancement during eccentric 
contraction, the curvature constant in the force–velocity 
curve, the maximum contraction velocity or the shape at 
the extremities of the active contractile element exhibit small 
impact on the capacity of muscle to produce force.

4.4  MTU Path

The definition of the muscles path is fundamental for the 
dynamic analysis of MSK systems, since the muscle length 

and its rate of change affect the computation of muscle 
forces, moment arms, and the resulting body and joint 
loads [113]. The first and simplest muscle path model is the 
straight-line model, in which the muscle path is represented 
by a straight line between the centroids of both the muscle 
origin and insertion [110]. Since the MTU may wrap around 
several bones or other tissues, and form curved paths, the 
straight-line model is often inadequate. To overcome this 
limitation, the centroid-line model [360, 361] represents the 
muscle path as a line that passes through the locus of cross 
sectional centroids of the muscle [110], which are difficult to 
obtain for every joint configuration and make the application 
of this model challenging. Methods that consider several via 
points (i.e., several points along a muscle path whose posi-
tions are constrained by the presence of another anatomical 
structure) along the segment have also been presented [108, 
352], but they are only valid for simple hinge joints [110]. 
For joints with more than one DoF, the muscle can slide over 
the anatomical surfaces and lead to an incorrect computation 
of muscle lengths and muscle moment arm discontinuities.

Considering these limitations, Garner and Pandy [110] 
proposed a new method, designated Obstacle-Set Method, in 
which each muscle is modelled as a frictionless elastic rub-
ber band that wraps around anatomic structures. The mus-
cle is considered as a series of straight-line and curved-line 
segments that pass through several via points, which may 
be fixed or not to bones. This approach defines two types of 
via points: fixed via points that remain fixed in a bone refer-
ence frame, and obstacle via points that are not fixed in any 
reference frame but are constrained to move on the surface 
of an underlying obstacle.

In this approach, straight lines connect adjacent via 
points, while curved lines define the muscle path around 
the surface of anatomical structures, which are represented 
by regular-shaped rigid bodies, including a single-sphere, 
a single cylinder, a double cylinder, and a sphere-capped 
cylinder [110]. All these methods require the definition of 
the radii of geometric elements (spheres and cylinders), the 
position and orientation of the fixed reference frame on those 
elements and the position of two bounding-fixed via points 
with respect to the bone reference frame. An example of the 
application of the single sphere obstacle-set is to define the 
path of the biceps brachii muscle [110]. The single cylinder 
obstacle-set can be used to obtain the path of uniarticular 
muscles, while the double cylinder obstacle-set is a suit-
able option to model the path of biarticular muscles and it 
differs from two simple cylinders since, in the double cyl-
inder, no bounding fixed via points exist between the two 
cylinders [110]. Additionally, the double cylinder obstacle-
set enforces both cylinders not touching each other where 
the muscle path interacts with each cylinder. Finally, the 
sphere-capped cylinder allows to obtain the muscle path of 
long muscles that span joints with more than one DoF [110].
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Although the Obstacle-Set method allows the automatic 
generation of muscle wrapping around anatomical struc-
tures, it only considers simple geometries, which is not 
always anatomically accurate. Later, Gao et al. [111] pro-
posed an alternative method to generate muscle wrapping 
over surfaces with arbitrary shape, while maintaining a high 
numerical efficiency. This method can be applied to all mus-
cles and it only requires data regarding muscle origin and 
insertion and the geometry of the bones that interact with the 
muscle. To simplify the computations, the bones are treated 
as a stack of cross sections, and the muscle paths as a set of 
connected lines passing through the cross sections where 
muscle and bone interaction occurred [111].

More recently, Stavness et al. [112] proposed a method 
in which the total muscle path is composed of geodesic 
segments wrapping around each surface and joined by 
straight-line segments. The proposed algorithm computes 
the shortest path across multiple implicit surfaces, which 
define the anatomical structures, using an iterative procedure 
in which the positions of the origin points of the geodesic 
segments are adjusted to ensure the two geodesic segments 
on each surface connect collinearly and the adjacent straight-
line segments are tangent to the surface in the connection 
points. Although this method is generic and provides accu-
rate results, it is computationally slow [112].

Afterwards, the Natural Geodesic Variation technique has 
been proposed to improve the accuracy and computational 
efficiency of the calculation of MTU’s shortest path across 
an arbitrary number of general smooth wrapping surfaces 
[113]. This method uses a single geodesic segment per 
surface, therefore, it only considers the constraints for the 
shortest path at the transitions between the geodesic and 
straight-line segments.

4.5  Muscle Redundancy Problem

Human joints are spanned by a large number of muscles, 
which allows to perform a specific movement with different 
combinations of muscle actuation without compromising its 
goal. According to Bernstein [188], “It is clear that the basic 
difficulties for co-ordination consist precisely in the extreme 
abundance of degrees of freedom, with which the [nervous] 
center is not at first in a position to deal”. This issue is com-
monly known as muscle redundancy and means that there is 
not a unique solution for a specific motor task [188].

In case of injury, muscle redundancy allows the subject to 
perform a given task by recruiting different sets of muscles, 
which is less efficient but provides a temporary alternative 
until recovering full functionality. In addition, muscle redun-
dancy also allows for having muscles optimized to perform 
different combined movements (e.g. flexion + rotation) or 
muscles which, when active, act immediately at the level of 
two joints (biarticular muscles).

From a mathematical perspective, the number of 
unknown variables, i.e., musculo‐tendon forces, muscle acti-
vation, or neural control surpasses the number of dynamic 
equations, equal to the DoFs of the system, which results in 
an undetermined problem with an infinite number of pos-
sible solutions. Optimization techniques are often applied 
[108] to find the combination of musculo-tendon forces that 
minimizes a particular cost function. It should be noted that 
musculo-tendon forces, commonly used in the MSK models, 
do not distinguish the forces produced by the muscle and the 
forces produced by the tendon at the MTUs. The definition 
of the cost function is a critical step [37], which, in some 
cases, becomes easy when the performance criterion is clear, 
as in a vertical jump, in which the goal is to maximize the 
vertical displacement of the body’s center of mass during the 
flight phase [215]. However, the cost function becomes hard 
to define when there is no clear criterion, as in walking. A 
wide variety of cost functions with different physiological 
criteria can be found in the literature, namely mechanical 
energy, dynamic effort, jerk, stability, or maximum abso-
lute joint torque, muscle activations, volume-scaled activa-
tions, forces, stresses, metabolic energy, and joint contact 
forces [362]. The most commonly used consider the muscle 
stress-endurance relationship to minimize muscle stress, 
while maximizing muscle endurance [115, 363], or consider 
the muscles’ energy consumption mechanisms, the cross 
bridges detachment and the calcium re-uptake, to minimize 
the energy expenditure [364]. However, these cost functions 
are not suitable for tasks in which the goal is to maximize 
its performance [365].

Generally, performance criteria based on principles of 
energy minimization, such as the metabolic energy, mechan-
ical energy and dynamic effort, tend to present better results 
[37, 366]. However, Ackerman et al. showed that the use of 
only energy-related cost functions does not always lead to 
natural and realistic movements. While simulating the gait 
movement, these authors showed that this type of functions 
do not allow to obtain the typical knee flexion pattern that 
occurs during the stance phase [37]. To improve the realism 
of the simulation, several authors consider the use of track-
ing control approaches, which can be included in the objec-
tive function or as an optimization constraint to minimize 
[367]. More recently, several authors addressed the inclu-
sion of joint reaction forces in the cost function to obtain 
more physiological musculo-tendon forces and joint contact 
forces [41, 362, 368]. Moissenet et al. [41] showed that their 
inclusion resulted in contact force patterns similar to those 
observed in vivo and in a more physiological loading pattern 
during the stance phase. However, the authors also refer that 
the tuning of the optimization weights has a strong influence 
on the obtained muscle–tendon forces.

The selection of the optimization technique and the defi-
nition of the design variables and constraints [369, 370] is 
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a fundamental issue, and static and dynamic optimization 
routines are the most used. In static optimization, the optimi-
zation problem is solved independently for each time frame, 
the set of muscle forces that balances the joint moments is 
found while also satisfying the selected cost function [115, 
371, 372]. However, this method only takes into considera-
tion instantaneous criteria, which does not mimic the deci-
sions of the CNS and leads to non-physiological on–off 
switching of muscle forces. Despite these limitations, this 
approach is very robust and computationally efficient. In 
dynamic optimization, the time history of the simulation 
along with the muscle contraction and EC coupling dynam-
ics are used to find muscle forces [36], which leads to more 
accurate physiological results. Moreover, such optimization 
techniques also allow to define time-integral cost functions 
or time-dependent functions. The dynamic optimization can 
also address questions for which no experimental data exist, 
such as, deep muscles forces using non-invasive approaches.

In general terms, dynamic optimization problems can be 
stated from three different perspectives: forward dynamics 
optimization, inverse dynamics optimization and predictive 
dynamics. In forward dynamic problems, the variables to 
optimize are the forces, joint torques, muscle forces or mus-
cle excitations. This type of methods has the advantage of 
the movement be directly obtained from the integration of 
the equations of motion and from the initial state of the sys-
tem. On its turn, these methods tend to be computationally 
expensive and require accurate boundary values to stabilize 
the system. Inverse dynamic-based problems optimize vari-
ables related with the kinematic of the system (e.g., posi-
tion, angular joint position, among others). This type of 
problem does not require the integration of the equations of 
motion and accurate boundary values, being consequently 
more efficient than the previous methods. However, this 
type of analysis requires experimental data and the forces 
are not directly obtained from the optimization. Predictive 
dynamic problems optimize simultaneously the kinematics 
and dynamics of the system. This way, the optimized posi-
tions, torques and forces of the biomechanical system are 
obtained directly from the simulation. Predicative methods 
present also other computational advantages. Since the equa-
tions of motion are treated as equality constraints, this type 
of methods does not require their explicit integration, as well 
as no boundary information is needed to achieve the optimal 
solution. In contrast, this method leads to large optimization 
problems with a large number of design variables, requiring 
specific optimization algorithms [373].

Predictive methods can be further divided into semi-
predictive or fully predictive methods [374]. The former 
requires tracking the error between the optimization out-
puts and experimental data. For that purpose, the differ-
ences between the simulated and experimental data (e.g., 
the position of a given point/joint at a specific time instant) 

are included in the optimization process as a cost function to 
minimize. Other approaches consider alternative algorithms, 
such as the proportional-integral-derivative control or the 
computed torque control to track the experimental data. 
Although these methods enable the computation of realistic 
joint torques and muscle forces [375], they are limited to the 
study of human motion with experimental measurements 
and cannot be used when the conditions (environment, goal, 
execution speed, amongst others) in which the task is per-
formed change [36]. In contrast, fully predictive methods do 
not require experimental data, which make them suitable to 
study movements in which the data is missing or to test tasks 
with varying conditions [376].

In addition to the methods addressed before, other 
approaches can be found on literature. These include varia-
tions to the inverse and forward dynamics methods, mixed 
approaches, implicit methods, neural networks, among oth-
ers. The interest reader is referred to the works of Ezati et al. 
and Xiang et al. for more information on this topic [36, 373].

From a computational point of view, dynamic optimiza-
tions have a high computational cost, since they require to 
simulate the entire movement for each possible solution and 
a more detailed MSK model [377]. To address this issue, the 
optimization problem, and in particular the predictive meth-
ods, can be stated in terms of an optimal control problem, 
which can be solved using indirect or direct methods [378]. 
To solve an optimal control problem, four key elements are 
required: (i) the state equations of the dynamical system, 
(ii) the controls that influence the behavior of the system; 
(iii) the constraints and (iv) a performance criterion [379].

In the context of biomechanics, direct methods, which 
include the direct shooting and direct collocation methods, 
tend to be preferable, since they do not require the solution 
of a boundary-value problem. Amongst them, the direct col-
location method is the most commonly used, since it avoids 
the integration of equations of motion, as these are included 
in the optimization as equality constraints that must be ful-
filled. This procedure enables to decrease significantly the 
computational costs when compared with direct shooting 
methods [380].

However, both forward dynamic and predictive 
approaches require the inclusion of models to depict the 
interaction between the body and the surrounding environ-
ment (e.g., foot–ground [381–383], leg-orthosis [384–386], 
hand-assistive device contact [387–389], among others), 
since contact forces play a key role in muscle, ligament, and 
joint reaction forces [381]. This interaction can be modeled 
using kinematic constraints or a compliant contact model. 
In the first approach, unilateral kinematic constraints are 
used to model a perfectly inelastic collision without sliding. 
Regarding the second approach, the contact geometry must 
be defined and a constitutive viscoelastic model is applied 
to estimate the contact forces [382, 390].
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In particular, several works have been published to predict 
the contact forces between the ground and foot for several 
movements [381, 391–395]. Most of these models represent 
the foot surface by a set of points [392] or spheres/ellipsoids 
[382] and apply simple spring/damper elements. However, 
Shourijeh and McPhee [381] indicate that models based on 
point contact elements lead to sharp contact forces that do 
not depict the experimental data, suggesting the use of volu-
metric models.

4.6  Ligaments

Ligaments are composed of dense fibrous bundles of colla-
genous fibers, primarily type I collagen, protected by dense 
irregular connective tissue sheaths. These collagen fibers are 
extremely stiff and highly aligned in the direction of force 
transfer [396]. In some cases, ligaments form a sac that sur-
rounds the articulating bones and contains a fluid lubricant, 
the synovial membrane whereas sometimes fasten around or 
across bone ends in bands [396].

From a physiological point of view, ligaments are similar 
to tendons and fasciae as they are all made of connective tis-
sue. Ligaments connect a bone to other bone while tendons 
connect muscle to bone and fasciae connect muscles to other 
muscles. The junction between the soft tissue of ligaments 
and the hard tissue of bones varies greatly among differ-
ent ligaments as well as between the two ends of the same 
ligament [397]. Ligaments play a very important role in 
permitting several degrees of movement, constricting inap-
propriate movement or guiding joint motion and stabilizing 
joints even in the absence of muscle and tendon forces [397]. 
When ligaments no longer ensure joint stability, abnormal 
kinematics occurs which may lead to damages in the tissues 
in and around the joint, such as wear of the cartilage or oste-
oarthritis. In contrast to muscle, ligaments cannot usually 
regenerate naturally. The mechanical properties of ligaments 
are related with composition of the collagen fibers and the 
proteoglycan-rich matrix that surrounds such fibers. Some 
ligaments are richer in collagenous fibers, which produces 
more inelastic behavior, whereas others are rich in elastic 
fibers, which make them quite tough even though they allow 
elastic movement. Due to their histological similarity with 
tendons, both tissues have similar mechanical properties.

Likewise tendons, the ligament force–displacement curve 
behavior is non-linear when subjected to constant strain rates 
[398]. This occurs due to the progressive recruitment of the 
collagen fibers during load increases [399].

Moreover, the ligament only responds to traction excita-
tion, therefore, when the ligament length is shorter than the 
resting length no force is generated, however, small changes 
in ligaments length can cause large passive forces. Liga-
ments also present creep, stress relaxation, and hysteresis. 
However, due to differences in the percentage of collagen 

molecules, in the content of elastin and in blood supply 
from insertion sites, ligaments present different behavior in 
response to loading.

In conclusion, from a mechanical point of view, ligaments 
are passive elements that present a viscoelastic behavior, i.e., 
the applied stress results in an instantaneous elastic strain 
followed by a viscous time dependent strain. Ligaments 
mainly resist to uniaxial loads, however, they also experi-
ence shear and transverse loading in vivo [397]. Moreover, 
since, in certain joint configurations, ligaments wrap around 
each other or bones, they are also subjected to compressive 
contact stresses [397].

4.7  Ligaments Computational Models

Although ligaments play a key role in joint stability they are 
not commonly used in the modeling of musculoskeletal bio-
mechanical models for human analysis within the framework 
of multibody systems dynamics, since the purpose of these 
models is to explain muscle function [213]. However, when 
included in MSK models, ligaments are usually described 
by several line elements that correspond to different fiber 
bundles. Similar to muscles, each ligament requires the defi-
nition of the ligament geometry path. For that purpose, a 
point set composed of an origin, insertion and via points 
for each ligament is required [400]. The most appropriate 
stress–strain curve for each ligament must be defined to 
obtain accurate key ligament properties.

Ligaments have been commonly modeled with elastic 
nonlinear force-strain relationship [401–404], which means 
that the force a ligament exerts on bone is only a function 
of its length. The lack of accurate descriptions of the vis-
coelastic properties of the ligaments, lead to the representa-
tion of the ligaments as elastic springs [402], in which the 
only variables required are the stiffness and the undeformed 
length of the spring. However, some authors opted for mod-
elling the ligaments as rigid links to constraint the motion of 
the articulating anatomical structures. (e.g., shoulder [192], 
knee [405] and ankle [202]).

More recent models use one-dimensional non-linear 
spring-damper elements to represent ligaments, which 
require (i) the ligament zero-load length, i.e., the length 
when it first becomes tense, (ii) the reference length, i.e., the 
length at the reference (typically extension) position and (iii) 
the reference strain, i.e., the strain at that reference position. 
Despite its low complexity, this model still enables investi-
gators to predict quantities such as joint kinematics [403].

Several studies [401, 402, 406–408] used the force–dis-
placement curve originally presented by Wismans et al. 
[402] and Blankevoort et al. [401] to obtain the zero-load 
length of the ligament. In some cases, the ligament reference 
length and strain value were obtained from previously pub-
lished studies [401, 409, 410]. Although this approach does 
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not take subject-specific ligament information into account, 
it facilitates the modeling of the ligaments due to the diffi-
culty to find data for the actual zero-load length [409]. Opti-
mization techniques can be utilized to overcome the lack of 
the referred data [408, 409]. Bloemker et al. proposed an 
alternative approach in which an experimental setup based 
on cadaveric specimens is used to measure the passive limits 
of the knee joint, calculate the extent of motion for each liga-
ment bundle and apply a correction factor, to determine its 
zero-load length [403]. Bersini et al. [404] developed a MBS 
dynamic model of the lower limb segments that includes 
ligaments based on MRI from a single Caucasian male and 
a forward dynamics analysis was performed to obtain the 
ligaments parameters.

4.8  Application Cases and Discussion

The first aspect that stands out from the literature is the high 
degree of complexity of the most recent MSK models when 
compared to the most antique ones. Older models primarily 
addressed the modeling of simple MSK systems of the most 
relevant anatomical segments, such as the lower limbs [351, 
411], the upper limbs [412], or both [413, 414], while more 
recently MSK models evolved to represent in high detail 
those segments. The works of deZee et al. [232], Christophy 
et al. [415], Raabe and Chaudari [229], Kuai et al.[228] and 
Bassani et al. [227] concerning the detailed modeling of 
the lumbar spine; Ignasiak et al. [226] regarding the thora-
columbar spine; Malaquias et al. [59] and Kim and Kipp 
[416] on the foot; Quental et al. [198] and Nikooyan et al. 
[412] regarding the shoulder; and Holzbaur et al. [417] and 
Ma’touq et al. [418] with respect to the hand are representa-
tive. Many musculoskeletal models include two specific 
segments, the patella, and the talus, to define, respectively, 
quadriceps insertions and subtalar joint axis.

The use of generic or subject-specific MSK models is a 
relevant topic since in contrast with the first models, nowa-
days highly detailed subject-specific musculoskeletal mod-
els can be implemented. The MSK models were developed 
based on scaling the muscular parameters obtained from 
cadaveric specimens [91, 212, 351], which does not consider 
the inter-individual variability, such as, muscle origin and 
insertion sites. This issue influence the prediction of muscle 
force and moment arm, which limits its use for pre-surgical 
or rehabilitation assessments [101]. Hence, subject-specific 
models should be used instead, as reported by Martelli 
et al. [419] and Nejad et al.[420] when comparing the joint 
contact forces in the hip and knee obtained with generic or 
subject-specific models.

Traditionally, the implementation of subject-specific 
models is very time-consuming since the segmentation of 
the anatomical structures was performed manually, however, 

developments in medical image processing and visualization 
have reduced considerably the overall processing time [421].

Thus, a suitable solution to obtain subject-specific models 
is to register or morph (geometric interpolation technique 
that is often used to transform one form into another) the 
medical images of the subject of interest based on previous 
studies containing muscle–tendon attachment sites and lines-
of-action [422], or muscle volumes [422]. For that purpose, 
statistical shape models (SSM) are a powerful tool to accu-
rately parametrize complex geometries, such as the one pro-
vided by an individual's morphology [320]. Consequently, 
SSM provide a solution to obtain a realistic and personalized 
description of any subject by combining conventional mul-
tivariate statistics and dense sets of homologous landmarks 
used to depict the underlying structures [423]. The work of 
Salhi et al. [424] concerning the prediction of subject-spe-
cific muscle origin/insertion regions for the shoulder joint 
and for the lower limb is a demonstrative example of this 
approach. Nolte et al. [319] used SSM to provide subject-
specific bone shapes from surface digitized experimental 
data.

The SK morphing is very important since the dimension 
and shape of the model segments have a great impact on 
force and moment predictions of MSK models. The need of 
medical images of the subject under analysis, in particular 
MR images, limits the generalization of SSM.

Another approach that enables the adjustment of the MSK 
models parameters is based on the comparison between 
the measured and the estimated kinetic data [425], which, 
sometimes, present incongruities as a result of inaccurate 
modelling assumptions (e.g., rigid body), problems with 
the estimation of segment inertial properties and measure-
ment errors (e.g., soft tissue artifact) [426, 427]. A common 
approach used to solve this problem is the RRA method 
[149, 150]. This reduces or eliminates the residual forces 
and torques estimated by the biomechanical model, which 
do not actually exist, to comply with the prescribed kinemat-
ics and kinetics [375, 428–430]. Usually, these differences 
are reduced by adjusting the BSIPs of the subject or the 
kinematics of the movement [431, 432]. Recently, Sturdy 
et al. [433] proposed a multi-heuristic optimization method 
to automatically tune the RRA parameters, improving simul-
taneously the accuracy of the algorithm.

The development and validation of accurate joint models 
is also relevant for MSK modeling, and most of the studies 
that estimate muscle and joint forces uses generic joint mod-
els [434]. However, the anatomical differences between sub-
jects lead to distinct joint center or axes of rotation, which 
results in different muscle and joint contact forces that the 
generic models are not able to reproduce [434, 435]. To 
address this issue, numerous studies developed subject-spe-
cific joint models based on MRI and CT that include detailed 
representations of the anatomical structures of the joint, such 
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as: (i) the hip [102, 436–438], (ii) the knee [74, 439–442]; 
(iii) the ankle [443, 444]; or (iv) the elbow [445, 446].

Musculoskeletal models have been applied in healthy and 
pathological populations [74, 414, 436] performing distinct 
movements, such as running at different speeds [414], over-
ground jogging [229], level walking [420], squatting [436] 
and deep squatting [420], or jumping [447]. Furthermore, 
the use of these models has not been restricted to a specific 
technology, since examples of studies using optical motion 
capture systems [198, 227, 392, 419], inertial motion units 
and depth sensors [316, 317] can be found.

An important finding is that the use of MSK models is not 
restricted to researchers able to develop their own computa-
tional routines, since commercial and open-source software 
such as, the AnyBody (AnyBody Technology, Denmark), 
the Visual3D (C-Motion, Germantown, MD), the SIMM 
(MotionAnalysis, SantaRosa, USA) or the OpenSim [358] 
software is available.

Table  4 contains several examples of MSK models, 
including planar or spatial, generic and subject-specific 
models depicting different anatomical segments. Further-
more, for each model, the name, author, year of publica-
tion, anatomical segments, and software or programming 
language used in its development are presented.

A final remark worth referring is that although most of 
the MSK models included in this work are spatial, recently 
Dumas et al. [43] and Millard et al. [39] proposed full body 
planar MSK models. Despite their simplicity and limita-
tions, these models provide reliable results under some con-
ditions and are a valuable tool to demonstrate the differences 
between inter-segmental and contact forces [43].

In summary, MSK models are an important tool to esti-
mate individual muscle forces and their contribution to joint 
moments. They started by considering generic models and 
progressively evolved to subject-specific models. Simulta-
neously, the level of detail of the representation of the ana-
tomical structures, such as joints and muscles increased over 
time, which led to a more accurate representation of physi-
ological, and anatomical characteristics of an individual. 
Furthermore, since different technologies and software can 
be used to obtain the necessary data for MSK models, their 
use is not restricted to laboratorial environments or limited 
by financial issues. The main drawback of MSK is neglect-
ing the dynamics of muscle EC coupling, including only the 
muscle contraction dynamics. To overcome this drawback, 
NMSK models are a suitable option.

5  Neuromusculoskeletal Models

Neuromusculoskeletal models are representations of an 
individual’s skeletal, muscular, and neural system since 
they not only include bones, tendons, joints and muscles 

[429] often represented as Hill-type actuators [356, 449], 
but also the muscle EC coupling dynamics. Thus, NMSK 
models are composed of different components, such as the 
‘‘neuro”, the “musculo” and the “skeletal” that depict the 
ECC dynamics, the muscle activation dynamics, and the 
skeletal dynamics, respectively. Therefore, such models 
overcome some of the limitations of MSK models which 
make them suitable to identify the relationship between 
the neurophysiological and muscle levels [118]. The major 
issues associated with them are the modeling of the EC 
coupling dynamics which implies a higher computational 
effort.

5.1  MTU Excitation Contraction Coupling

Humans can produce adaptive movements by skillfully 
manipulating their MSK system within a temporal and spa-
tial structure [450]. This process is regulated by the CNS 
that transmits a neural excitation signal to the muscle, which 
in turn becomes activated and leads to the production of 
muscle force.

The ECC describes the sequence of occurrences that 
begins with the propagation of the neural signal from the 
nervous system on the muscle’s surface membrane and leads 
to the contraction of muscle fibers [451, 452] (see Fig. 4). To 
produce muscular contraction, the nervous system sends a 
neural signal or action potential propagated through special-
ized cells, the motoneurons, which stimulate the muscle fib-
ers. The set formed by these two elements is called a motor 
unit. Then, the muscle fibers become activated and, there-
fore, capable of contracting and producing muscle force. The 
lag activation process describes the time period that occurs 
between sending a neural signal and the effective muscle 
fiber contraction [453].

Motoneurons possess structures at their ends called 
axon terminals, which form a neuromuscular junction to 
connect the motoneuron to the muscle fiber. A muscle is 
stimulated when a neural signal arrives at this junction and 
release a neurotransmitter (acetilcoline or ACh, which is 
contained within vesicles) into postsynaptic clefts (small 
gaps located in between the axon terminals and the muscle 
fiber) causing muscle activation. ACh binds to specialized 
receptors located at the muscle fiber membrane, which 
provokes its local depolarization and rapidly propagates 
to the entire muscle. This alteration in membrane polari-
zation origins the release of calcium ions  (Ca2+), which 
bind to a protein called troponin and take part in muscular 
contraction occurring at sarcomere level. This occurrence 
acts as a trigger, causing the actin filaments to bind to 
myosin filaments (crossbridges), beginning the muscle 
contraction by the sliding of the two filaments relative to 
each other, according to the sliding filament theory. When 
the neural signal ends, the concentration of calcium ions 
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within the muscle fibers is reduced, inhibiting the cross-
bridges between the two myofilaments and the muscle 
relaxes [454, 455].

After the activation, the muscle contracts and produces 
force, which depends on two physiological processes. The 
muscular force production may be influenced by the fre-
quency of neural signals or stimuli that arrive at muscle fib-
ers or on the recruitment of additional motor units [456].

The muscle EC coupling dynamics, i.e., the relation-
ship between the neural drive and the muscle activation, is 
modeled as a first-order process [87]. The following section 
addresses the computational modeling of the EC coupling 
dynamics.

5.2  Excitation Contraction Coupling Computational 
Models

In the last 50 years the knowledge about the ECC coupling 
process evolved from how an action potential on the muscle 
surface could initiate contraction within only 1–2 ms to a 
point in which the major proteins involved in EC coupling 
were identified, and experiments to define the molecular 
interactions between the proteins were conducted [457].

Some models of EC coupling distinguish the number of 
motor units recruited and their firing frequency [343], but, 
within the framework of MBS dynamics, the more com-
monly modeling approach assumes that the EC model rep-
resents the net effect of both motor neuron recruitment and 
firing frequency. These EC coupling models include the ones 
presented by Zajac [87], Winters [458] or Thelen [459], 
among others [460].

Fig. 4  Processes occurring from neural signal sending until the pro-
duction of muscle force. When a neural signal arrives to the axons of 
a motoneuron, it is propagated to the adjacent muscle fibers, provok-
ing muscle stimulation. This occurrence enables ACh to be released 

in the synaptic cleft, provoking muscle activation. When the muscle 
is activated, calcium ions are released into the muscle fibers, initiat-
ing muscular contraction, which in turn leads to muscle force produc-
tion

Fig. 5  Representation of the skeletal muscle excitation contraction coupling dynamics



 I. Roupa et al.

1 3

A first-order nonlinear differential equation is used to 
describe this process [87, 458, 459, 461] which introduces 
a delay between the neural excitation (i.e., the firing of motor 
units) and the active state of the muscle (i.e., the concentra-
tion of calcium ions within the muscle) [462]. This delay is 
fundamental to avoid the physiological inaccurate instan-
taneous MTU activation or relaxation that occurs when 
the EC coupling modeling is disregarded [463, 464]. The 
use of a first-order model to represent the activation and 
deactivation dynamics is a suitable option to model the net 
result of the EC coupling, however, it is not able to model 
the underlying complex molecular dynamics [462]. These 
models relate the activation and deactivation dynamics with 
two time constants. The activation time constant refers to the 
delay between the onset of excitation and maximum twitch 
force, while the deactivation time constant refers to the delay 
between the neural excitation finish and the decrease in the 
muscle force production [462]. Several studies provide ref-
erence values for these time constants [87, 458, 459, 465].

The inclusion of such features in the EC coupling mod-
els allows that the mechanical activation follows the excita-
tion asymptotically and is bounded between 0 (muscle fully 
relaxed/no excitation) and 1 (muscle fully activated/full exci-
tation). Furthermore, it also guarantees that the muscle force 
rises faster during excitation than it decays during relaxation, 
as illustrated in Fig. 5, which is in accordance with experi-
mental evidence [466, 467] and it is explained by the slower 
rate of calcium diffusion out of the muscle fibers.

Despite their good accuracy, the first-order EC coupling 
models usually present some drawbacks, namely, the use of 
similar activation and deactivation time constants through-
out the movement trajectory.

From a physiologically perspective, this assumption is 
inaccurate since it has been shown that these constants are 
complex functions of muscle fiber length, velocity, and stim-
ulation frequency [462]. The use of similar activation and 
deactivation time constants for muscles with different fiber 
composition also undermines the physiological resemblance 
of these models. These constants should be adjusted accord-
ing to the selected muscles to increase the accuracy of the 
EC coupling modeling [468].

5.3  Application Cases and Discussion

This literature review identified a significant body of litera-
ture on NMSK modeling, with the first works dating back 
to the beginning of the 2000s [106, 356, 469, 470]. NMSK 
models with distinct degrees of complexity were developed 
almost simultaneously, which contrasts with SK and MSK 
models since their earlier works started by modeling the 
major anatomical structures and progressively evolved to 
more complex models. The full body model by Hase et al. 
[469], the knee model by Lloyd and Besier [106], the 

shoulder and elbow model by Buchanan et al. [356], or the 
elbow model by Koo and Mak [468] are representative of 
such works.

Table 6 contains several examples of planar or spatial 
NMSK models, depicting different anatomical segments. 
Additionally, the approach used to solve the problem is also 
presented.

Despite their complexity, NMSK have been used in differ-
ent populations for distinct purposes, namely test the effect 
of an elbow joint replacement on the NMSK system prior 
to a surgery [471]; design of lower-limb prosthesis systems 
[472, 473]; simulate functional tests used in impaired popu-
lations [474]; estimate joint moments across a wide range of 
tasks and contractile conditions [106]; predict normal joint 
kinematics during single limb support phase of gait [475]; 
quantify the risk of falling [476], estimate muscle forces [75, 
470, 477]; estimate physiologically plausible joint contact 
forces [107, 478]; or perform predictive gait simulations 
[479].

The most common NMSK models in the literature are 
based on the use of EMG data or explore control and opti-
mization algorithms to obtain the optimal solutions. EMG-
driven methods can predict physiological muscle forces over 
a wide range of motor tasks and for different populations 
with varying age and pathology [485–488]. They also pro-
vide a strong correlation with the subject’s motion inten-
tion. Due to its advantages, EMG has been used by several 
research groups to obtain dynamic outputs for either isomet-
ric or dynamic tasks at different anatomical locations such as 
the elbow [471, 489], shoulder [55], knee [106], ankle [490], 
jaw [491], wrist [360] and lower limb [492].

Besides requiring experimental data, EMG-driven meth-
ods can present some drawbacks related with experimental 
and computational conditions that can influence the accu-
racy of its outcomes, namely: (i) difficulties to incorporate 
deep muscles for which EMG measurements cannot be 
made; (ii) muscle cross-talking; (iii) dependence on the 
quality of EMG signals, which is strongly affected by the 
sensors placement, the skin condition, the environment and 
the electric and magnetic noise; (iv) inaccurate prediction 
of the moments around multiple DoFs; (v) difficulties to 
attain the true EMG-maxima, since EMG-linear envelopes 
are normalized to peak values to reflect percentage excita-
tion levels; and (vi) signal alteration due to preprocessing 
procedures such as the choice of filter type and cut-off fre-
quencies [478].

Optimization- and control-based methods are also uti-
lized to track experimental joint dynamics or to infer mus-
cle excitations of NMSK models [465, 480, 493]. When 
used to track experimental data, these methods tend to 
provide results similar to those obtained using EMG [375, 
494]. However, several authors have shown that, for the 
same joint angles and moments, different individuals use 
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different excitation patterns depending on the control tasks 
[495–497], pathology [498–500], and training [501, 502].

When used to infer muscle excitations, this approach 
assumes that human motion is ruled by a set of different 
performance criteria [503, 504] that may vary according to 
the task goal. Mathematically, these criteria, which include 
metrics related with joint kinematics and dynamics, energy, 
ground-reaction-forces, performance, among other types, 
are expressed in the form of an objective function that is 
minimized during the optimization problem, as discussed on 
Sect. 4.5. An important aspect of the definition of the objec-
tive function is its influence on the simulation outcomes, 
being still an open topic [37, 373, 505].

Numerous optimization techniques have been used within 
the context of human movement [36]. However, the optimal 
control formulations stand out, since they not only allow to 
simulate human motion satisfying all the different equal-
ity and inequality constraints imposed on both the system 
and the motion task, but also to solve the muscle redun-
dancy problem [506]. Optimal control methods have been 
used for a long time [215, 507, 508]. However, their solu-
tion is highly dependent on the algorithm used [507]. More 
recently, the direct shooting and the direct collocation meth-
ods have been successfully used to perform human motion 
simulation [509]. The direct shooting method requires the 
parametrization of the muscle excitations that minimize the 
selected cost function, and the problem is solved sequen-
tially, i.e., the cost function is evaluated in each time frame, 
which leads to a very high computational cost. Therefore, 
some studies only address simple problems or use simple 
control parameterizations that lead to a non-optimal solution 
to the system of equations [507]. In turn, the direct colloca-
tion method solves all time frames simultaneously. Although 
this approach leads to a non-linear programming problem 
with a high number of optimization variables (controls and 
states), the system becomes sparse and more computation-
ally efficient than direct shooting methods. Thus, direct 
collocation method has been applied to simulate different 
human movements such as, gait [509], running [510], jump 
[380] or Olympic track cycling standing start [511], amongst 
other movements.

A suitable solution to handle with the limitations pre-
viously reported to the use EMG-driven and optimization 
methods are the EMG-informed methods. These combine 
experimental EMG-driven models and optimization tools 
to adjust the acquired EMGs and predict the activation pat-
terns of muscles to which no experimental data exists. This 
approach allows for the computation of the optimal muscle 
excitations and muscle dynamics that minimize the joint 
moment tracking errors, while simultaneously calibrate the 
muscle parameters to the subject and movement in analysis 
[107, 368, 478, 512]. Furthermore, EMG-informed mod-
els also increase the accuracy of subject-specific model 

parameters and accurate neural commands [513] and allow 
for the study of co-activation patterns [368, 514].

From a computational point of view, NMSK models are 
very complex when compared to SK and MSK models, 
which limits their widely application. Despite their complex-
ity, neuromusculoskeletal computational models play a key 
role to improve the knowledge on how the human nervous 
system controls the movement of the limbs during different 
activities in both unimpaired and impaired subjects. Moreo-
ver, their outcomes are fundamental to explain the relations 
between muscle activity and the kinematics and dynamics of 
human movement. Additionally, NMSK are also very impor-
tant to develop solutions that allow impaired people to regain 
motor function in cases of disability.

6  Conclusion

The human movement requires highly coordinated actions 
from the neuromusculoskeletal system, and the study 
of those mechanisms is a challenging topic addressed by 
numerous researchers. Multibody system dynamics presents 
an accurate and non-invasive approach to study such mecha-
nisms. This approach is based on the use of biomechani-
cal models, which are mathematical representations of the 
human SK, MSK or NMSK systems.

Neuromusculoskeletal models are the state of the art in 
what concerns the biomechanical models, since they provide 
detailed information about an individual’s skeletal, muscu-
lar, and neural systems. However, these models present a 
high computational cost or require some parameters difficult 
to obtain, which limits its wide use. On the other hand, MSK 
models are a suitable solution to obtain accurate kinematic 
and dynamic outcomes of human motion, as well as muscle 
forces, with a lower level of complexity. MSK and NMSK 
models present the muscle redundancy problem, which 
requires the use of optimization-based methods. Finally, SK 
models are the least complex models, since their outcomes 
only consist of kinematics and joint moments.

To ensure an appropriate accuracy of biomechanical mod-
els’ outcomes, several issues must be addressed during the 
modeling process. In SK models, the selection of the type 
of body (rigid or flexible) that depict the human segments 
and corresponding inertial parameters, and the choice of the 
most accurate joint models and respective axis or center of 
rotation are the most important issues. In addition to those 
topics, MSK also requires the MTU modeling, scaling and 
path definition. Finally, NMSK models also include the neu-
ral inputs through the ECC dynamics of the MTU.

In addition, most of the biomechanical model parameter, 
such as BSIPs, joint centers, segment reference frames, mus-
culotendon and EC coupling parameters, contact models, 
amongst others, can be tuned using experimental data or by 
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applying other methods based on geometric relations, opti-
mization, Kalman filtering or optimal control. Therefore, the 
modelling and analysis procedures are not necessarily inde-
pendent. The coupling of these two steps enables to obtain 
more customized models, which better depict the subject in 
analysis leading to more accurate predictions.

To conclude, the modeling of biomechanical systems for 
human movement analysis has remarkably evolved during 
the last decades which allowed to progress from quite sim-
ple to very complex models that provide very accurate and 
realistic representations of the human body. These advances 
were fundamental to optimize motor performance, treat 
movement disorders, or to restore motor function in cases 
of disability. Despite these improvements, the combination 
of technological progress and human desire for knowledge 
keeps this field with great interest, namely in the develop-
ment of complex subject-specific biomechanical models 
and its application to daily life activities or to simulate 
human motion using tracking data obtained using innova-
tive approaches such as machine learning techniques.
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